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Abstract

There are several challenges involved in developing naturally and efficiently

conversing Spoken Dialogue Systems (SDS). Fluid turn-taking is one such challenge.

In traditional SDS the system has to wait until the user has finished speaking before

starting to process the user’s input in order to respond to it. Incremental dialogue

processing is an important feature in SDS that can make them more efficient and

natural compared to their non-incremental counterparts. Incrementality in SDS

means that the processing of the user utterances (word-by-word) starts before the

input is completely available and the system generates output increments as soon

as possible, which in turn results in natural and efficient human-system interaction.

In this thesis, I first present models for incremental dialogue policy development

and show that the incremental dialogue policy helps SDS perform better than their

non-incremental counterparts and about as well as humans. Then I present an

incremental dialogue policy developed using reinforcement learning. The work then

provides models for incremental utterance segmentation and labeling in multiple

domains. The work also applies transfer learning towards the development of

an incremental dialogue policy. I show that an effective policy can be learned

with fewer data samples using a transfer learning approach. Collecting data for

the development of an SDS is an important step. In this work, I also develop a

web-based crowd-sourcing framework for collecting spoken interaction data.

xxi



Chapter 1

Introduction

“Knowing is not enough; we must apply. Wishing is not enough; we

must do.”

– Johann Wolfgang Von Goethe, Writer, Statesman

1.1 Introduction

Recent advancements in Spoken Dialogue Systems (SDS) have been very excit-

ing. These advancements can be largely attributed to the improvements in the

performance (accuracy & speed) of components that make up a typical SDS pipeline

such as speech recognition systems, and language understanding and generation

modules. For instance, recent Automatic Speech Recognizers (ASR) outperform

humans in the task of transcribing speech, i.e., converting speech to text (Xiong

et al. (2018))1. Similar advancements driving the development of text-to-speech,

language understanding, and language generation have helped achieve progress in

the field of SDS development. As a result of these advancements, numerous SDS

that serve as personal task assistants (e.g., Alexa, Siri, Google Home, Cortana,

etc.), health assistants (e.g., DeVault et al. (2014); Stratou et al. (2015); Kenny

et al. (2008); Bickmore et al. (2005); Manuvinakurike et al. (2014)), pedagogical

agents (e.g., Litman & Silliman (2004); Graesser et al. (2005); Traum et al. (2015);

DeVault et al. (2011b)), etc. have been developed in recent times. Despite this

1Using audio of high quality and non-spontaneous speech.

1



progress, SDS continue to score low on naturalness and lack scores of capabilities.

This work aims to bridge this gap by providing methods to make SDS more natural

and efficient.

The human dialogue processing capability is vastly superior compared to current

state-of-the-art SDS. This superior human performance can be attributed to a

variety of dialogue processing behaviors that are not typically exhibited by current

SDS. For instance, humans generate back-channels, acknowledgments, laughter, and

use a multitude of other non-verbal behaviors (e.g., head nods, gaze, etc.). Also,

humans do not wait for their partner to finish speaking to build an understanding of

what is being spoken. Human understanding happens incrementally word-by-word

(or even sub-word) as and when the information is available (Marslen-Wilson (1973)).

This equips humans with the capability to generate real-time feedback (e.g., uh-huh,

hmm, head nods, etc.), interrupt, seek clarifications by asking questions, generate

utterances to collaboratively complete their interlocutor’s partial utterances, etc.

Such conversational behaviors are part of what makes human conversation natural

and efficient.

These types of behaviors constitute what we call ‘incremental’ behaviors in the

context of SDS. These behaviors, referred to as ‘incremental processing’, are the

focus of this work. In fact they are so important that not exhibiting them makes

SDS seem significantly less natural and less efficient (e.g., see Aist et al. (2007b)).

Developing such SDS that score high on naturalness and effectiveness is a very

challenging task and an open research problem.

The goal of this work is multi-fold. First, I study incrementality, which is

central to achieving the goal of natural and efficiently conversing SDS. We run

experiments to demonstrate this in a live human study. A significant portion of

this work is devoted towards modeling incrementality (mainly in the language
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understanding and dialogue management modules) and studying the importance of

incrementality in SDS. Second, the work studies the research questions involved in

building an incremental SDS. This involves an incremental SDS architecture and a

data collection methodology. This incremental SDS must be quick and capable of

processing the user input as soon as the user issues an utterance. Over the course of

building an incremental SDS, numerous challenges and research questions emerge,

mainly related to data collection and processing. Finally, I focus on extending the

work in three directions: i) Addition of semantic processing (such as dialogue act

segmentation and labeling) with a focus on incrementality. ii) Extending the work

to other domains. This includes the application of incrementality to real-world

problems and transferring an incremental dialogue policy learned in one domain

to other related domains, iii) Multi-modal fusion of vision and language by using

a visually grounded language understanding model called ‘words as classifiers’

(Kennington & Schlangen (2015)).

1.1.1 Claims & Contributions

The main claims & contributions of this work are:

1. Incremental SDS are more efficient at performing a given task and

are perceived by users as better than alternative architectures: SDS

with ‘incremental’ processing capabilities outperform their ‘non-incremental’

counterparts. With ‘incremental’ processing SDS achieve performance com-

parable to that of humans in a situated task. This is the first work in the

literature that shows conclusively that incremental SDS perform better qual-

itatively and quantitatively for a given task compared to non-incremental

SDS. This work specifically tests two hypotheses:
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• Incremental processing results in a better quantitative task performance

than alternative non-incremental architectures and achieves performance

comparable to humans.

• SDS with incremental processing capabilities are qualitatively perceived

by users as better than non-incremental SDS.

2. Reinforcement learning approaches help learn a better dialogue

policy: Reinforcement Learning (RL) in the literature has yielded supe-

rior performance compared to other approaches for dialogue policy learning.

However, it is not clear in the literature how much effort is involved in the

development of baselines used for comparing against RL approaches. This

is understandable as the focus is typically on the RL algorithms and their

application to dialogue policy learning. Thus, the advantages of using RL in

learning a policy are often unclear. In this work:

• By comparing an RL policy with a strong baseline in an offline study

(using real user dialogue data), we show that the RL approach learns a

better policy than a carefully designed rule-based policy. In the literature,

the baselines used for comparing against RL policies are often weak. In

this work, we show that RL learns a better policy compared to a strong

baseline that achieves near-human-level performance.

• In an online user study we also show that the RL policy achieves better

qualitative performance. This is also the first work in the literature that

employs RL in support of developing a dialogue policy for an incremental

reference resolution task.

3. Transfer learning approaches help learn a better dialogue policy

with fewer data points: Using transfer learning, an incremental dialogue
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policy learned in one domain (source domain) can converge faster when

transferred to a new domain (target domain) and also achieve better task

performance with fewer data points. This is the first work in the literature

that utilizes transfer learning for learning incremental dialogue policies.

• With transfer learning a dialogue policy can be learned for a specific

situated task in a target domain using information from a related source

domain, and help the agent achieve better performance compared to the

condition that does not employ transfer learning.

4. Incremental segmentation and labeling in real-world SDS: Incremen-

tal segmentation and dialogue act labeling help save time in human-system

interaction by helping the SDS identify the user’s intentions before completion

of the user’s utterance. This is the first work in the literature that applies

incremental segmentation and dialogue act labeling to a real-world problem

and shows that the savings achieved hold promise for including incremental

policies in SDS. More specifically, this is the first work providing evidence

that incremental segmentation and dialogue act labeling can be more efficient

for the user and save time in accomplishing tasks in a real-world application.

The hypotheses tested are:

• Segmentation and dialogue act labeling can help develop more incremen-

tal dialogue systems without compromising task performance.

• Segmentation and dialogue act labeling applied to incremental processing

can be used in a real-world problem and help achieve time savings.

• In the domains that involve grounding the meaning of words on visual

features, the segmentation and labeling approach helps outperform

baseline models that do not use segmentation and labeling.
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5. Crowd-sourcing offers a cheaper and better alternative for building

spoken dialogue corpora: Data is very important for the development of

an SDS. Crowd-sourcing serves as an effective platform for collecting spoken

dialogue data despite the users not owning quality audio equipment. The

disadvantage incurred due to the reduced quality of data is compensated by the

diversity and larger user participation. This is the first work in the literature

that develops a web-framework in support of collecting crowd-sourced spoken

dialogue corpora for building incremental SDS. The hypotheses tested are:

• Crowd-sourcing spoken dialogue data collection is cheaper and faster

than traditional in-lab methods. This is not trivial as preparing the

data for SDS development requires multiple steps, i) collect, ii) clean,

iii) transcribe, iv) annotate, and each of these steps presents a unique

challenge.

• Data collected using crowd-sourcing is comparable in quality with data

collected in the lab.

The outline of this work is discussed in detail in Section 1.2 which is summarized

in Figure 1.1.

1.2 Thesis Outline

In this section, I will discuss the outline for the rest of the work.

Related work In Chapter 2, I begin with discussing a typical general SDS

architecture. The general SDS architecture is a pipeline model that takes user speech

as input and generates the system response as output. It has been argued in the

literature (e.g., Allen et al. (2001); Schlangen & Skantze (2011)) that the standard
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SDS pipeline needs modification for accommodating truly incremental SDS. I discuss

these incremental SDS architectures that have been proposed for accommodating

incremental dialogue processing. In this work, I adopt incrementality in a standard

SDS pipeline architecture with high-frequency message-passing to show that SDS

can be made incremental while still being based on the general pipeline architecture.

Chapter 2 also discusses past works on incrementality in the context of SDS. With

a few examples, I also motivate the importance of including incrementality in SDS.

Data Data collection and annotation are important steps in the development

process of SDS. In order to build an incremental SDS, it is necessary to have data

consisting of human conversations recorded with accurate timing information (e.g.,

the ASR needs to provide timing information along with the recognized words

as noted in Baumann et al. (2017)), transcribed and annotated with a relevant

annotation scheme. It has become clear in the literature that collecting human-

human conversations is a necessary first step in the development of SDS (Lasecki et

al. (2013)) as this data can be used for training the components of the SDS pipeline.

The common practice is to collect conversations between humans in a controlled lab

setting with high-quality recording equipment. Such in-lab methods are beneficial

as the quality of the data collected in such settings can be controlled well. Audio

data collected in such settings have high fidelity (low background noise) as the

quality of the equipment used to record the audio can be controlled. Additionally,

there can be detailed delivery of instructions from the research staff to the recruited

subjects. However, collecting a large dataset of hundreds (if not thousands) of

conversations is often a massive undertaking requiring large amounts of time and

money. These experiments also suffer a setback as the subjects that are recruited for

the experiments are demographically constrained. The subjects are brought to the
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lab from the area around the location of the experiment for collecting the data, and

this results in data of lower demographic diversity. In recent times, crowd-sourcing

has become extremely popular as it addresses the diversity problem and at the

same time provides a large pool of participants. Web-based crowd platforms allow

parallelizing the process of data collection which allows collecting a large corpus in

a short period of time. Crowd-sourcing is popular for collecting data and is being

used extensively in many applications such as the development of ASR models

(Panayotov et al. (2015)), computer vision (Lin et al. (2014)), etc., and has helped

achieve tremendous progress. However, collecting real-time conversational data

using crowd-sourcing remains a significant challenge as the infrastructure required

for such data collection is engineering intensive. Furthermore, the quality of the

environment and the equipment are hard to control. It is also not clear how the

dialogues collected will compare with the tried and tested methods of in-lab data

collection. After data collection, the data need to be curated and annotated so

that they can be used to train machine learning models.

In Chapter 3, I present an SDS for a visual reference resolution application

and the steps involved in building it. This includes the domain description, data

collection, and software architecture of the required tools for data collection and

the SDS. In this chapter, I discuss the architecture and software developed which

could be useful for developing similar systems in the future. The trade-offs involved

in data collection for SDS in the lab and using crowd-sourcing are not clear. In

this chapter through an experiment, we compare the difference in the quality of

the data. We also discuss the software architecture of the SDS developed for the

crowd-sourcing environment, and run experiments using crowd-workers and detail

the advantages of using the crowd-sourcing paradigm. The discussions presented in
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this chapter are covered in Manuvinakurike et al. (2015) and Manuvinakurike &

DeVault (2015).

Incrementality In Chapter 4, I discuss incrementality in SDS developed for a

game called RDG-Image (Rapid Dialogue Game - Images). The SDS developed is

named Eve. I discuss the algorithms involved in training Eve’s components such

as language understanding and dialogue management. We compare the different

versions of Eve’s dialogue policy with a varying degree of incrementality and show

the advantages of developing an SDS that is highly incremental. Eve’s performance

is measured quantitatively and qualitatively in a study with human users conducted

using crowd-sourcing. We achieve near-human-level performance in a dialogue

task and thereby show the advantage of developing a highly incremental SDS.

The discussions presented in this chapter are covered in Paetzel et al. (2015) and

Manuvinakurike et al. (2015).

In Chapter 5, we extend Eve by using the reinforcement learning (RL) framework

for learning an incremental dialogue policy. In the literature of dialogue systems

when comparing the performance of an RL dialogue policy against a baseline, the

effort spent on the development of the baseline is minimal. This is understandable

as the focus of the research is often not on the baseline but rather on the RL

algorithms under study. In this work, we compare the performance of an RL-based

Eve against a very strong baseline Eve (based on carefully designed rules) which

performs as well as humans, and against human performance. This discussion is

covered in Manuvinakurike et al. (2017).

The application of RL also opens up an avenue for exploring how this work can

be applied to other related domains using transfer learning, which will be studied

as well. We utilize a pre-existing resource that does not consist of any dialogues
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in our target domain, and show that transferring the incremental dialogue policy

learned in another source domain to our target domain helps the agent outperform

a similar agent not using the transfer learning methods. In Chapter 5, we also show

that by using transfer learning we can train models faster in our target domain

with fewer data points.

Semantics Human language involves complex semantics usage. In Chapter 6,

we study methods to equip SDS with incremental language understanding capabil-

ities by including incremental segmentation and dialogue act detection modules.

Incremental segmentation and dialogue act detection correspond to classifying

the dialogue segments in the user utterance and identifying the dialogue act of

the corresponding segment. We explore incremental segmentation and dialogue

act detection in SDS for two different domains involving different challenges and

complexities. The domains covered in this chapter can also be found in Paetzel et

al. (2014), Manuvinakurike & DeVault (2015), Manuvirakurike et al. (2018), and

Manuvinakurike et al. (2018a). We extend the work to a real-world problem and

show the importance of segmentation and dialogue act detection. We also show the

importance of including such capability in SDS by measuring the savings in time

and the task performance. In this work, we focus on the understanding capabilities

of SDS. We utilize state-of-the-art deep learning techniques for building dialogue

act labelers and show that such methods can outperform traditional classifiers.

This discussion is covered in Manuvinakurike et al. (2016, 2018b).

Another direction explored in this work is to include vision capabilities in SDS.

When the language understanding module makes a reference resolution decision, we

utilize basic vision features and combine this information with language information.

We show that segmentation and labeling are important in making decisions about
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complex visual domains and help improve the performance of the agent in a reference

resolution task. This is dealt with in Chapter 7.

Figure 1.1 shows the outline of the work.

1.2.1 Relation to Previous Publications

The framework for crowd-sourcing spoken dialogue data and the qualitative

and quantitative comparisons with in-lab collected data has been published in

Manuvinakurike & DeVault (2015). The extension of the framework to support

dialogue data collection with an incremental agent and the architecture of the

agent is published in Manuvinakurike et al. (2015). The development of the

dialogue policy based on Carefully Designed Rules (CDR) and the study with

humans users comparing incremental versus non-incremental architectures are

published in Paetzel et al. (2015). The development of the RL-based policy and

the offline comparison (using real user data) with the CDR policy are published

in Manuvinakurike et al. (2017). The extension of the work with incremental

segmentation and dialogue act detection is published in Manuvinakurike et al.

(2016). The application of incremental segmentation and dialogue act detection

to a complex image editing domain is published in Manuvinakurike et al. (2018a),

Manuvirakurike et al. (2018), and Manuvinakurike et al. (2018b). Finally, the

models for incremental segmentation and dialogue act detection for fine-grained

understanding using basic visual features have been published in Manuvinakurike

et al. (2016) and Zarrieß et al. (2016).
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• Crowd-sourcing as a platform 
for dialogue data collection 
provides cost and time saving 
advantages. 

• Higher quality of audio in the 
lab setting is offset by crowd 
users performing better at a 
given task. 

• Fully-incremental SDS perform 
better at a task than non-
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incremental SDS. 

• Fully-incremental SDS achieve 
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in humans compared to 
alternative SDS architectures

Can we improve 
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achieves better performance 
in offline analysis compared to 
a strong baseline.

• In a real-human study RL 
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user perception than a strong 
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high performance. 

• The incremental policy 
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domain and helps the agent 
perform better. 
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without compromising the savings in 
time and task performance.

• Incremental dialogue act segmentation 
for a real-world task and complex 
domains shows that the approach is 
transferrable to other applications. 

Chapter 7

Figure 1.1: Outline of this work and sequence in which topics are covered. The
contributions made in each section are highlighted and covered in the corresponding
chapters.
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Chapter 2

Spoken Dialogue Systems &

Incrementality

In this chapter, I discuss the two centerpieces of this work: i) Spoken Dialogue

Systems (SDS) architecture, ii) incrementality.

The outline for the chapter is as follows: In Section 2.1, I discuss the components

of a typical SDS pipeline. The SDS processes the speech input from the user and

generates a relevant spoken response. To enable this, the SDS needs to convert

speech to text, understand the user utterance, process, and generate the response for

the user. We discuss the components which typically enable SDS in achieving this. In

Section 2.2, I discuss incremental speech processing (referred to as ‘incrementality’)

in SDS. Incrementality in SDS impacts the traditional SDS processing pipeline

as the relevant decisions need to be made with low latency. The advantages of

incremental SDS are explained with a few examples in Section 2.2.3, which motivate

the domains used in this work.

2.1 Spoken Dialogue System Architecture

A generic standard SDS pipeline architecture is discussed in this section. We

look at the components of such an SDS pipeline and their functionalities. The SDS

takes speech input from the user and generates speech output for the user with
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discrete processing functions performed by the intermediate components. Figure 2.1

shows the components of a typical SDS pipeline.

ASR NLU

DM 

NLGTTS

Automatic Speech
Recognition

Natural Language
Understanding

Dialogue
Manager 

Natural Language
Generation Text-to-Speech 

Speech
input

Speech
output

Typical SDS
pipeline

Figure 2.1: The pipeline of a typical SDS.

Now, I discuss the components of the SDS pipeline and briefly describe the

functions with a few examples.

2.1.1 Automatic Speech Recognizer

Feature
extractor Decoder

Acoustic
model

Language
model

W0 ... Wn

Pronunciation
dictionary

Feature
vectors

Microphone

Speech
input

Word
output

Figure 2.2: The modules of a typical HMM-based ASR (Gales et al. (2008)).
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The Automatic Speech Recognizer (ASR) converts the speech input to a text

output called transcription. Examples of such ASR include Kaldi (Povey et al.

(2011)), PocketSphinx (Huggins-Daines et al. (2006)), Google speech recognizer1,

Microsoft Cortana2, etc. ASR in recent times have achieved low WER (∼ 5%)

(Word Error Rate) which is a measure of how well the ASR converts the audio

input to correct words.

HMM (Hidden Markov Model) based speech recognizers such as Sphinx, etc.

have achieved low WER in recent times. Such ASR takes audio input that is

typically sampled between 16KHz - 44.1KHz by standard microphones. These

audio samples are down-sampled to standard 16KHz that are then input to audio

feature extractors. The feature extractors encode the audio samples as MFCC

features (Mel-Frequency Cepstral Coefficients). These encoded samples are then

decoded to the text output that is made up of the most likely sequence of words

by the decoder module. This decoder module utilizes i) an acoustic model, ii) a

pronunciation dictionary, and iii) a language model to produce the word sequence

output. The acoustic model and the language model determine the likelihood of the

sequence of words. The acoustic model converts the audio features into a phoneme

(basic units of sounds) sequence which is then converted to word output using the

pronunciation dictionary. The language model is then used to model the most

probable sequence of words by searching through the likely possible sequences of

words and then limit the list of possible hypotheses using pruning. Figure 2.2 shows

the architecture of a typical HMM-based ASR. Typically the ASR produces n-best

text hypotheses (transcriptions) of the input audio samples. A detailed description

of such an ASR can be found in Gales et al. (2008).

1https://cloud.google.com/speech-to-text/
2https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
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In recent times the best performing ASR have been built using deep learning

models for acoustic and language modeling (Xiong et al. (2018); Panayotov et al.

(2015)) and achieve a WER as low as 5% on non-spontaneous dictation based

speech. The WER on spontaneous conversation is much higher3.

End-to-end speech recognition (Graves et al. (2013)) has also received much

attention because it promises conversion of speech to text with simpler modeling.

Such systems convert the input speech signal into sequences of words without

explicit acoustic models, pronunciation dictionary, and language models. Such

systems have also achieved appreciably low WER in recent times (Amodei et al.

(2016)). ASR continue making progress in achieving lower WER.

Many standard out-of-the-box ASR are available (Google, Microsoft, Watson,

Alexa, etc.) which operate on the cloud and provide online decoding functionalities

(i.e., provide text output before the complete utterance is spoken). Such services

along with standalone ASR toolkits such as Kaldi (Povey et al. (2011)) and

PocketSphinx (Huggins-Daines et al. (2006)) are commonplace in an SDS pipeline.

The main factors that play an important role while choosing an ASR for building

an incremental SDS are low WER, a capability to perform live online decoding

(convert speech to text incrementally), and low latency. In this work, we adopt the

standalone Kaldi ASR and Google cloud ASR for the development of incremental

SDS as they both satisfy the requirements for building incremental SDS. This work

does not claim any novel contributions towards ASR research and architecture.
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# Speaker Utterance Intent Slot Value

1 Speaker 1 Hi Greeting

2 System Hello! How can I help you 

today?

3 Speaker 1 Can I reserve a table for 2? Request type reserve_table

#guests 2

4 System What time?

5 Speaker 1 7pm today Inform time-date 7pm 2/14/2029

6 System Your name please

7 Speaker 1 My name is Ron Inform guest_name Ron

8 System Your reservation of a table 

for 2 at 7pm is confirmed. 

Anything else?

9 Speaker 1 No! Thank you No_answer

Thanks

10 System Ok, Bye

11 Speaker 1 Bye Bye

Figure 2.3: An example showing how NLU operates. The user input is classified to
intents, slots, and values.

2.1.2 Natural Language Understanding

The next component in the SDS pipeline is the NLU (Natural Language Under-

standing) module. The text output from the ASR is input to the NLU module,

which infers the intentions and meanings of the user speech. The standard NLU

tasks involve tree-based parsing, word-level sequence tagging, and utterance classi-

fication (intents, slots-values, dialogue acts, speech acts, etc.). The function of the

NLU varies depending on the application of the SDS. Generally, the NLU converts

the input text into higher level abstract representations. These representations

are either specific to the SDS application (e.g., Lemon et al. (2006); Williams et

al. (2015), DeVault et al. (2011b)), or general such as dialogue acts (e.g., Core &

Allen (1997); Bunt et al. (2010); Bunt (2009)), or both. The primary function of

3A recent analysis of WER on conversational speech can be found in Baumann et al. (2017)
and Morbini et al. (2013).
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the NLU module is to convert the diverse user utterances into a standardized input

representation that can be interpreted by the SDS. I will demonstrate one such

application through an example.

In the example shown in Figure 2.3, a conversation between a speaker (Speaker

1) and the SDS (System) performing a restaurant table reservation task is demon-

strated. The NLU in this example converts the utterances from the speaker (line

#1,3,5,7,9,11) into intents, slots, and values representations. The intents are higher-

level labels that specify types of user intentions. The users could intend to perform

a task by choosing to generate numerous possible utterances, for example, the

‘greeting’ intent could be achieved using the utterances, ‘hi’ , ‘hello’, ‘good morning’,

etc. The slots and values (Figure 2.3) are the task-specific information provided by

the users to accomplish their goals, for example, # of guests, date, time, etc. In

the example shown in Figure 2.3, the system can perform the task of booking the

table only when it has all the required information (type of request, # of guests,

date-time, and guest name). When the user issues a request (line # 3, Can I

reserve a table for 2?), the system knows that the speaker intends to perform the

task of reserving the table for 2 guests. The task of the NLU in this example

is to identify the user intents, slots, and values. It is important to note that the

intents, slots, and values are not the only possible design alternatives for the NLU

module. In DeVault & Traum (2012), the output of the NLU is in the form of an

Attribute-Value matrix (AVM) which is a semantic frame consisting of a set of

attributes and values derived from an ontology designed for the domain. They are

also accompanied by the confidence score in the AVM.

In an SDS where the understanding of the user input is based on visual signals

as well, the NLU needs to accommodate such vision input. Figure 2.4 shows such

an example of a vision-based SDS. In this example, the user input consists of two
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parts, a statement and a yes/no question. In order to answer the question, the

system needs to build an understanding of the image along with the user utterance.

The information from the language and the visual modalities is combined, and the

output is sent to the dialogue manager. Such SDS which require both spoken and

visual input (e.g., Allen et al. (2001), Gorniak & Roy (2004)) have gained attention

in recent times. Understanding of the words and the visual scene (objects, user gaze,

head-nods, etc.) in such SDS is necessary. For example, in Kousidis et al. (2014)

head-nods are used as an input to the dialogue manager to infer the user state.

In recent times, this method of composition of information from the modalities

(vision and language) has been done using deep learning approaches such as CNNs

(Convolutional Neural Networks) and LSTMs (Long Short Term Memory Networks)

(Antol et al. (2015)). In this work, we focus on such applications combining vision

and speech.

The NLU produces the output in a format that is then utilized by the dialogue

manager/policy. We will now see the function of the dialogue manager/policy.

2.1.3 Dialogue Manager

The Dialogue Manager (DM), also called action manager, policy, etc., takes the

output generated by the NLU module and generates the action (often a response)

that needs to be generated by the SDS. The DM utilizes the output of the NLU

(semantic frame, intents-slot-value, dialogue acts, etc.) and in many cases also

utilizes application specific database functionalities, and generates an output in

the semantic form that is then utilized by the NLG (Natural Language Generation)

module to produce the natural language text output.

Figure 2.5 shows the operation of a sample dialogue manager which is an

extension of the example introduced in Figure 2.3. In this example, we zoom into
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This is cute! is that a dog that the cat is sitting on

ASR

STATEMENT:              <s>This is cute</s> 
YES/NO QUESTION: <s>is that a dog that the cat is sitting on </s>

Segmenter and Dialogue Act labeler

CAT

DOG

Relation: CAT is sitting on
DOG

DM/Policy

NLU Composition

Figure 2.4: An NLU architecture for a visual question-answering application.

the DM operation utterances indicated by #5 (Speaker 1: 7pm today) and #6

(System: Your name please) in Figure 2.3. Upon the speaker issuing the utterance

#5 (7 pm today), the NLU converts the utterance into the semantic frame indicated

in Figure 2.5 which consists of intent (inform), slot (time-date), and value (7 pm

2/14/2029). The system at this point figures out that it needs the guest_name

from the user to complete the reservation. This Request is now sent to the NLG

module which converts it to a natural language output. The DM, in order to

accomplish this task, maintains the state information, which consists of information

presented by the user until that point in the conversation. The DM also needs

to track the state information of the user across a dialogue session. This task is

called dialogue state tracking, and such systems are often called Information State

Update dialogue systems (e.g., Georgila et al. (2005)).
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The other task of the DM is to request additional information from the user.

As in Figure 2.5, the DM issues a request guest_name information which is

then transferred to the NLG module. When the SDS has enough information, it

queries/updates the database (DB) with this information. As with the NLU, the

design of the DM is specific to the application.

DB

Slot Value

type request_reservation

#guests 2

time-date 7pm 2/14/2029

guest_name ?

userid session-xxxxxxx

NLU

INTENT: Inform

Slot  : time-date

Value : 7pm 2/14/2029

DM

NLG

INTENT: Request

SLOT: guest_name

TTS

TEXT: Your 

name please

Figure 2.5: The operation of an example DM.

2.1.4 Natural Language Generation

The Natural Language Generation (NLG) module takes as input the output

of the DM and converts it to a natural language response. Figure 2.5 shows

an example of NLG operation where the DM output is converted to a natural

language text output. A common NLG method is to employ a template-based

approach using a set of templates to convert the frame output by the DM into

text. For instance, in this example, each output from the DM is mapped to a

specific natural language sentence. Such methods are often criticized as repetitive
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and not scalable. Since each DM output frame is mapped to a template, the

generations produced by the SDS are often repetitive. A large number of possible

output frames by the DM makes it challenging to generate templates in the case

of open-domain SDS. For this reason, in recent times, data-based approaches to

utterance generation have yielded promising results. For instance, Wen et al. (2015)

use LSTMs (Hochreiter & Schmidhuber (1997)) for generating language. They show

that the utterances generated with this method are rated favorably by human raters.

We adopt template-based methods for NLG in this work. There are numerous

challenges in developing an NLG module and several NLG approaches that have

been proposed in the literature are covered in detail in Stent & Bangalore (2014).

2.1.5 Text-To-Speech

The natural language text response generated by the NLG module is converted

into audio output by the Text-To-Speech (TTS) module. Two of the most important

factors, guiding the decision criteria for selecting a TTS module and a specific

synthetic voice, are the naturalness and intelligibility of the synthetic voice. A

common approach to generating audio is to use pre-recorded human speech or an

out-of-the-box TTS such as CereProc4. It is, however, important to note that the

modulations of the voices and diverse tones generated by humans is an important

aspect of the TTS module. The problem of choosing the right voice for an SDS

is not trivial, and more detailed analysis is in Georgila et al. (2012). The audio

generated is then played back to the user.

4https://www.cereproc.com/
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2.1.6 Limitations

In the SDS architecture described, it is important to note the ‘pipeline’ nature of

the SDS, i.e., each component depends on the input from the module that precedes

it in the pipeline. This often imposes a strict-turn based limitation, especially

if the ASR does not support online decoding. The strict nature of turn-taking

is often undesirable in an incremental SDS (Allen et al. (2001)) which needs to

revise the understanding and thus the generation mid-utterance. In the next

section (Section 2.2) we discuss the incrementality and an SDS architecture that

accommodate incremental processing.

2.2 Incrementality

In this section, I motivate incremental processing by describing the mechanisms

observed in human language processing. I then discuss previous incremental dialogue

processing work carried out in the SDS literature. I also discuss examples which

motivate the domains covered in this work and the impact of incrementality on the

SDS pipeline.

2.2.1 Humans Process Language Incrementally

It is true that humans do not wait for the end of a sentence to process language.

The information presented (as a word or sounds) at a given point in time is

integrated with the information that has been already presented to build an

understanding incrementally. Humans also generate language incrementally often

planning sentences along the way. This mechanism of comprehending and generating

language incrementally is performed seamlessly by humans (Marslen-Wilson (1973)).

Incremental processing aids efficient language processing in humans by helping
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understanding and generation and thus saving time. We also continuously make

predictions for sounds, words, form, syntax, and semantics while processing language

(Tanenhaus et al. (1995), Sedivy et al. (1999)). Recent evidence indicates that we

not only use the information presented but also predict the future context (words,

syntax, and semantics) and integrate this knowledge in our processing to make

sense of what is being spoken and generate relevant responses (Salverda et al.

(2014), Maess et al. (2016), Pickering & Gambi (2018)). Incremental processing of

language is not trivial but rather involves complex planning and optimization.

Incremental processing is particularly useful when holding conversations. It

allows humans to achieve fluid turn-taking, provide acknowledgments, generate

interruptions, generate back-channels and other non-verbal cues, provide concurrent

feedback (uh-huh, yeah), generate collaborative utterance completion, etc. midway

through an utterance. This behavior helps achieve a state of mutual understanding

(grounding) faster, among many other advantages. Incremental behavior also

enables humans to interrupt and ask questions when in doubt and provide real-time

feedback (head-nods, back-channels, etc.) when following the information being

presented.

2.2.2 Incremental Processing in SDS

One compelling high-level motivation for systems developers to incorporate such

incremental processing into their systems is in order to reduce system response

latency (Skantze & Schlangen (2009)). As the incremental systems by design

process the user utterance at units smaller than an utterance of a typical user

turn, they possess the advantage of understanding and responding at a faster rate.

Figure 2.6 shows the operation mechanism of incremental SDS and non-incremental

SDS.
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USER UTTERANCE

NLU

DM
NLG

Non-Incremental Spoken
dialogue processing

system

Incremental Spoken
dialogue system pipeline

Time

Time saving

ASR

TTS

NLU

DM
NLG

ASR

TTS

Figure 2.6: The latency reduction advantage of using an incremental processing
pipeline vs. a non-incremental pipeline. The time savings achieved by the SDS
operation are shown in the figure. In a non-incremental SDS the ASR, NLU, DM,
NLG, and TTS modules operate in a pipeline manner. This results in increased
processing time due to the non-parallel operation. In a more incremental SDS the
modules begin processing as soon as the inputs are available thus reducing the
response time of the SDS. This comes at a cost of high performance processing
overhead required to achieve this functionality.

Recent studies have also demonstrated user preference of incremental systems

over their non-incremental counterparts (Skantze & Schlangen (2009); Aist et

al. (2007a)), shown positive effects of incrementality on user ratings of system

efficiency and politeness (Skantze & Hjalmarsson (2010)), and even shown increases

in the fluency of user speech when appropriate incremental feedback is provided

(Gratch et al. (2006)). Incremental systems have also been shown to be perceived

as comparatively more intelligent (de Kok et al. (2015)) compared to their non-

incremental counterparts.
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Equipping SDS with such incremental capabilities is very challenging and has

been an active topic of research (Aist et al. (2007a); Selfridge et al. (2013); Hastie

et al. (2013); Baumann & Schlangen (2013); Buß & Schlangen (2010); Dethlefs

et al. (2012); Selfridge et al. (2012); DeVault et al. (2011b); Skantze & Schlangen

(2009); Schlangen et al. (2009)). Incremental processing in SDS differs from the

typical turn-based processing on multiple levels. The functions performed by an

incremental SDS happen at a smaller time scale compared to a non-incremental

turn-based SDS. This means that the mechanism of operation in the SDS needs

to undergo modifications, which can be challenging. I will discuss i) architecture

choices involved in the development of an incremental SDS, ii) the choices and

sub-problems involved in the development of the NLU, and iii) the challenges in

the development of the dialogue manager/policy and the NLG.

Architecture Choices

The changes required in the architecture of an SDS are a necessary consideration.

The premise for the changes in incremental SDS are:

i) The system needs to start processing the utterance as soon as the users begin

their speech. The ASR needs to perform online real-time incremental decoding

of the speech input, i.e., process the utterances in chunks without dependence on

the future speech signals to produce the text output. The NLU (parser, classifier)

needs to begin processing the user utterance before the user completes the sentence.

The NLU needs to generate the output using partial hypotheses from the ASR

(called partials). This can often be difficult to achieve due to the instability of the

ASR output while performing online decoding. For instance, the incremental ASR

hypotheses for the words ‘green dog’ in a sequence are, ‘grey’, ‘grey in’, ‘green dog’.
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These hypotheses are generated every few milliseconds. Such instabilities have to

be accounted for by an SDS.

ii) Incremental systems should plan and begin generation of the output, often

before the user has completed the utterance when the confidence is sufficient. If

the new information requires changes to the currently being spoken utterance,

mechanisms for taking back the information that has been uttered (such as repairs,

self-interrupt) need to be supported by the architecture. In multimodal SDS,

integration of information from different modalities needs to be supported by the

architecture.

Allen et al. (2001) propose an architecture that supports i) and ii) as shown

in Figure 2.7. In this architecture, the interpretation manager, behavioral agent,

and the generation manager operate asynchronously. The interpretation manager

takes the speech input and generates speech acts as the output, which are utilized

by the behavioral agent to generate the appropriate behaviors. The generation

manager plans the responses that the system should generate. The discourse

context performs the job of providing the generation manager with the speech acts

from the user, which can be utilized to convert to text output. This architecture,

however, does not explicitly provide the mechanism for information composition

incrementally using the past utterances. However, utilizing an Information State

Update model (as in Matheson et al. (2000)) could help achieve this goal.

Schlangen & Skantze (2011) provide a detailed buffer-based incremental architec-

ture. In this general abstract model, the SDS is viewed as a network of processing

modules with information flowing between these modules. Each of these processing

modules is composed of a processor and two buffers (a left one and a right one).

The processor receives input from the left buffer, processes it, and then forwards

the output to the right buffer. The next step is to forward the contents of the right
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Figure 2.7: The architecture of Allen et al. (2001) for an SDS that supports
incremental processing.

buffer to the left buffer of the next module. Skantze & Hjalmarsson (2010) provide

an implementation of the model in an SDS.

In both of these models proposed for incremental processing, the typical SDS

pipeline needs to be redesigned completely. Rather than completely redesigning

their architectures, system builders may be able to gain some of the advantages of

incrementality, such as reduced response latencies, by incorporating incremental

processing in select system modules such as ASR or NLU. Such an architecture
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Figure 2.8: The architecture of Skantze & Hjalmarsson (2010) for an SDS that
supports incremental processing using the buffer paradigm (Schlangen & Skantze
(2011)).

utilizes the standard SDS pipeline and incorporates incremental processing capabil-

ities in the SDS components. In Chapter 3, we describe in detail the architecture

followed in this work, which supports the development of low latency SDS without

redesigning the SDS pipeline completely.

Now I will discuss works that have studied various incremental language pro-

cessing phenomena and tackle the sub-problems involved.

Incremental Language Processing

An incremental SDS needs to process user speech at a sub-utterance level,

including the language understanding module, the dialogue manager, and the

language generation module. The aspects of incrementality that have been studied

in SDS5 are

• Natural language understanding:

– parsing user utterances into a semantic form (e.g., DeVault & Stone

(2003); Kruijff et al. (2007); DeVault et al. (2011b); Eshghi & Lemon

(2014))

5Does not include the ASR and TTS modules as they are not the main focus of this work.
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– disfluency detection (e.g., Hough et al. (2015))

– segmentation and labeling (e.g., Nakano et al. (1999); Petukhova & Bunt

(2011); Hough & Schlangen (2017))

– grounding (e.g., Visser et al. (2014))

• Dialogue management & generation:

– turn-taking (e.g., Skantze & Hjalmarsson (2010); DeVault et al. (2011a);

Selfridge et al. (2013); Kousidis et al. (2014); Ghigi et al. (2014); Khouza-

imi et al. (2016))

– natural language generation (e.g., Kelleher & Kruijff (2006); Skantze &

Hjalmarsson (2010); Rieser et al. (2014))

Now I will discuss these in detail.

Natural Language Understanding

The incremental NLU module needs to be capable of generating the output

representation using the partial text hypotheses from the ASR. Many approaches

have been developed to support this functionality. I discuss two such popular

approaches for developing incremental NLU.

Parsing & semantic representation. In incremental SDS, as in DeVault et

al. (2011a), the ASR partial inputs are used to predict the AVM (attribute-value-

matrix) representation of the user utterance. The matrix contains a set of attributes

and values and the confidence scores assigned to this matrix, which are used by the

DM to take a specific action. The DM utilizes such a matrix input to generate the

next action.
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Another method for representing the user input is using dialogue acts. For a long

time, dialogue acts (e.g., Bunt (2009); Bunt et al. (2010)) have been an important

tool for understanding user utterances in SDS. They have also been another

important mode of representing user intentions in incremental SDS. Incrementally

detecting dialogue acts in the user utterance has been studied in Petukhova & Bunt

(2011). In SDS, such dialogue acts are often accompanied by intents and slot-values

Williams (2011) which the DM utilizes to take the next action.

TTR (Type Theory with Records) has also been studied in recent times in the

context of incremental dialogue processing (Hough & Purver (2014); Eshghi &

Lemon (2014); Zarrieß et al. (2017)). However, no single best representation for

NLU in SDS can be claimed.

Segmentation and dialogue act labeling. To allow users to speak naturally to

SDS, the NLU module needs to be operating incrementally. It has been understood

for some time that this ultimately requires a system to be able to automatically

segment the user’s speech into meaningful units in real-time while the user speaks

(Nakano et al. (1999)). Still, most current systems use relatively limited and

straightforward approaches to this segmentation problem. For example, in many

systems, it is assumed that pauses in the user’s speech can be used to determine

the segmentation, often by treating each detected pause as indicating a dialogue act

(DA) boundary (Komatani et al. (2015)). In such systems, each inter-pausal unit

(IPU) or speech segment identified by a Voice Activity Detection (VAD) component

is fed to an understanding component for interpretation.

While easily implemented, such a pause-based design has several problems.

First, a substantial number of spoken dialogue acts contain internal pauses (Bell et

al. (2001); Komatani et al. (2015)), as in I need a car in... 10 minutes. Using simple
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pause length thresholds to join certain speech segments together for interpretation

is not a very effective remedy for this problem (Nakano et al. (1999); Ferrer et al.

(2003)). More sophisticated approaches train algorithms to join speech across pauses

(Komatani et al. (2015)) or decide which pauses constitute ends of an utterance that

should trigger interpretation (e.g., Raux & Eskenazi (2008); Ferrer et al. (2003)).

This addresses the problem of DA-internal pauses, but it does not address the second

problem with pause-based designs, which is that it is also common for a continuous

segment of user speech to include multiple DAs without intervening pauses, as

in Sure that’s fine can you call when you get to the gate? The third problem is

that waiting for a pause to occur before interpreting earlier speech may increase

latency and erode the user experience (Skantze & Schlangen (2009)). Together,

these problems suggest the need for an incremental dialogue act segmentation

capability in which a continuous stream of captured user speech, including the

intermittent pauses therein, is incrementally segmented into appropriate DA units

for interpretation.

Dialogue management & natural language generation

The DM in incremental SDS needs to play an active role in deciding when to

intervene in the dialogue. Since the SDS can generate real-time interruptions and

feedback, designing the DM and NLG is a challenging task. The DM needs to

actively decide when to intervene in the dialogue without compromising on the

quality of the dialogue. An overly eager DM interrupting the user is undesirable in

an SDS and so is a DM which is too slow to respond (much like the present day

non-incremental SDS). This is because over-generating utterances can be annoying.

In DeVault et al. (2011a), the DM is a classifier which actively decides when to

intervene. The classifier utilizes the confidence scores in the NLU frames along
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with other information from the NLU to make a decision. Reinforcement Learning

(RL) is another method that has been used to improve the responsiveness of the

SDS and increase task success (Selfridge & Heeman (2010); Dethlefs et al. (2012);

Khouzaimi et al. (2015) Dethlefs et al. (2016); Kim et al. (2014)) in the DM and

NLG modules. For example, RL has been used to learn policies about when the

system should interrupt the user (barge-in), stay silent, or generate back-channels.

Reinforcement learning has shown promise for DM and will be actively used in this

work along with the classifiers, which will be covered in the later chapters.

2.2.3 Motivating Examples

In this section, we look at a few hypothetical examples highlighting the impor-

tance of incrementality, and its impact on the SDS processing pipeline. I also

introduce an alternative SDS pipeline that accommodates building such applica-

tions. Through these examples, I motivate the domains covered in this work and

highlight the important research questions that will be the focus of this work.

Example 1: Conversational image search

First we look at a hypothetical incremental conversational image search example.

A user converses with a hypothetical image search SDS which collaborates with the

user to retrieve the relevant images. Speech processing is faster than traditional

typing (Ruan et al. (2016)), and there are a growing number of users who use

voice for search (Schalkwyk et al. (2010)). Such voice-based interfaces are more

prevalent in mobile devices. Such a conversational image search system can also find

application in medical domains (Kalpathy-Cramer et al. (2011)). With additional

incremental processing by the conversational SDS, the system can generate quicker
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User I am looking for pictures of mount rainier Hmm …

Wizard Ok   

User I want to check black and white pictures No. I liked colors better

Wizard Ok 

time

time

User Yes! Spring with flowers This is perfect! Thanks. 

Wizard Are you looking for spring or fall weather

time

Image credits: https://www.flickr.com/photos/mountrainiernps/28944285044

Figure 2.9: A hypothetical conversation between a user and an SDS which can
perform conversational image search. In this example the user requests pictures of
Mount Rainier. The user and the SDS converse until an image has been found.

responses, provide feedback, and even help users achieve the goal of retrieving the

correct image faster.
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In this example (shown in Figure 2.9) the user is searching for an image. The

user begins the conversation by issuing an image search request (“I am looking

for pictures of mount rainier”). The SDS responds and displays the pictures using

an image retrieval engine. The user takes some time to look at the results and

modifies the query (“I want to check black and white pictures”), which yields

different image results. The user, upon checking the images, reverts the decision

and intends to have the previous set of images back. At this point, the SDS decides

to assist the user by issuing a disjunctive question (“Are you looking for spring

or fall weather?”) providing the options of selecting either Spring or Fall weather

pictures. The user likes the recommendation and clarifies before the system has

finished speaking that they want to see the spring pictures of Mount Rainier with

flowers (“Spring with flowers”). The system processes the request and displays the

new set of pictures. The user, at this point, likes the first displayed picture and

ends the dialogue exchange by thanking the SDS.

There are advantages in dialogue. The benefit of using dialogue in such a

scenario is that the system can not only track the user’s past search for easier

retrieval (“No, I liked colors better”) in the future but also recommend the search

results relevant to the current results (‘Spring or Fall’). This type of system is

usually implemented with a state tracking module in the SDS pipeline.

Advantages of incrementality. The benefit of incremental processing in this

example is that the user is shown the relevant images more quickly, as soon as

their preference is recognized by the system (e.g., “I want to check black and white

pictures”, “Spring with flowers”). Figure 2.10 shows the advantage of processing

the user query incrementally where the system can display the pictures to the

user faster. Along with the quicker retrieval, the user satisfaction could also be
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much higher as observed with incremental processing for other domains. It is also

important to understand the semantics of the user utterances (e.g., no answers,

image query, back-channels, etc.). For instance, in the example, when the user

responds “No. I liked colors better”, the intent was to revert the search to the old

images. Also, note that the same utterance is made up of two different intents.

The incremental model can identify the intents quickly before the user finishes their

utterance.

I WANT TO CHECK BLACK AND WHITE PICTURES

Incremental processing:
DISPLAY RESULT IMAGES HERE

Non-incremental processing:
DISPLAY RESULT IMAGES HERE

TIME

WORDS

WORDS I WANT TO CHECK BLACK AND WHITE PICTURES

Figure 2.10: Time saving in incremental dialogue processing (Example 1).

We will use conversation image search as motivation in Rapid Dialogue Game

(RDG) domains and as a testbed for incremental processing and other sub-problems.

Example 2: Conversational image editing

In the previous example, we introduced a scenario showing the advantage

of incremental image search. In this example, we look at another case called

conversational image editing, which involves more diverse and complex semantics.
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User:    I don’t like the guy creepily                         um a little bit higher till the black               yup that’s good                   um and from the bottom the wheel is
            staring so let’s crop top down                      frame                                                                                                    absolutely useless lets get rid of it
Wizard:                                                   ok                                                                    ok

User:         that’s good much better               let’s black and                         uh how do you adjust the                                         what happens if you go all
                                                                      white this picture                     black and whites                                                       the way up
Wizard:                                              alright                                alright                                                 uh with the contrasts

User:                                                                                                            can you keep going down I’ll          right there
                                                                                                                     tell you when to stop
Wizard:     this is all the way up                     this is all the way down                                                          ok

TIME

TIME

TIME

Figure 2.11: In this example the user and the SDS collaborate to perform the task
of image editing. The user requests edits and the SDS interprets and understands
the requests, and performs the edits on the image.

In this example, the user converses with the system to collaboratively perform

the task of image editing. Image editing using tools such as Adobe Photoshop,

Lightroom, Gimp, etc. has become popular in recent times. Image editing is a

difficult task requiring a steep learning curve. The users can take assistance from a

smart SDS to perform the task of image editing collaboratively. In this example,

we imagine an SDS performing the task of conversational image editing taking

commands from the user, recommending to the user what changes to perform,

and assisting the user to achieve the best edits. The image editing task is very

incremental as the users perform various small edits and often revert and update the

edits using short utterances. However, the semantics of user requests are complex,

which requires fine-grained understanding models.
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Non-Incremental Incremental
Intent Parameter Intent Parameter

t0 add

t1 a IMAGE_EDIT ADJUST

t2 vignette VIGNETTE

t3 to

t4 highlight

t5 better

t6 IMAGE_EDIT ADJUST, VIGNETTE

t7 I

t8 think

t9 that's

t10 good LIKE_EDIT

t11 enough

LIKE_EDIT

Figure 2.12: Time saving in incremental dialogue processing (Example 2).

Figure 2.11 shows an example conversation between a user and a hypothetical

SDS performing the image editing. In the first utterance, “I don’t like the guy

creepily staring so let’s crop top down”, the first part of the utterance, “I don’t

like the guy creepily staring” provides the user motivation to crop the photo to a

point until which the cropping needs to be done. The action that the user wants to

take is only known (cropping) upon hearing the utterance “let’s crop top down”.

Upon observing the changes performed on the image by the SDS the user issues a

command which provides additional information about the point up to which the

edits (“um a little bit higher till the black frame”) need to be performed. When

the user is happy with the edits, they issue the utterance “yup that’s good” which

indicates that the user is happy with the edit. The conversation goes on with

the user proceeding to perform other edits such as changing colors, contrasts, and

modifying the edits incrementally. Incremental processing is especially important in

the cases where the user keeps providing real-time feedback (“right there”, “a little
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more”, etc.) as in this case the inability to perform incremental processing in the

SDS will not only result in slow responses but incorrect edits. The diverse list of

image editing commands needs to be understood by the system along with the list of

attribute values (for example, command: cropping, attribute: position, from_top,

until_blackframe). In this work (Chapter 6), we develop such an incremental

language processing module and present an annotation schema, which helps achieve

the task of conversational image editing.

Figure 2.12 shows the additional time saving that can be achieved using incre-

mental processing. Performing real-time understanding helps save time and thus

can achieve higher naturalness perception and better efficiency.

Example 3: Hypothetical autonomous car

In this example, I show how such a method can be applied to another real-world

incremental SDS. Let’s imagine a hypothetical conversation in a not so distant

future with an autonomous driving taxi6. In this example, a human is on their

way to work on a winter day. The human usually takes the bus to work. Today

the bus is late. So, the human decides to summon an autonomous taxi using their

favorite taxi-hailing app from the bus stop. The taxi is approaching the user, but

there are a lot of people at the bus stop. The taxi is confused. The user also sees

on their app that the taxi is near but is not sure which car it is. So, the taxi places

a call to the human (referred to as Rider), and they have a conversation as shown

in Figure 2.13. In this example, as in the other two examples, the conversation

proceeds naturally, and it is critical to understand the user utterance and perform

the action in real-time while performing semantic understanding.

6This example is about spoken dialogue and not about the mechanics or ethics of autonomous
cars. The “taxi” in the example below is to be seen in the context of SDS.

39



ID Speaker Utterance
U1 Taxi: Hi Rider. I am here. Which one are you?
U2 Rider: Hi! I am the one with the black bag, blue

shirt holding a phone. . . .
U3 Taxi: Are you standing next to the sign post?
U4 Rider: Yes.
U5 Taxi: Cool. I see you.
U6: Rider: Awesome. Which one are you?
U7: Taxi: I am the white Prius with number plate THE-

SIS2019.
U8 Rider: Cool. I see you now.

Figure 2.13: A hypothetical conversation between an autonomous taxi and a human
(Rider). ‘. . . ’ means that the Rider is continuing to speak while being interrupted
by the Taxi.

In the next chapter, we look at the problem of data collection and pre-processing

that supports the building of an SDS.
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Chapter 3

Crowd-Sourcing Dialogue Data

Collection

“Data is a precious thing and will last longer than the systems them-

selves.”

– Tim Berners-Lee, Inventor of WWW

Data collection and preparation is an integral step that precedes building an

SDS. In this chapter, I discuss the data collection and preparation for building an

SDS, and also show the methodology adopted in building corpora in support of

developing an incremental SDS.

3.1 Introduction

The problem of data collection is often viewed as an engineering obstacle rather

than a problem of research inquiry. While it is true that data collection involves

overcoming numerous engineering and logistic hurdles, the process of data collection

posits interesting research questions.

1. A typical crowd-sourcing task involves assigning labels to a given image or

text, transcribing audio, performing a web search, and answering demographic

questions. There are also chat-based crowd-sourcing tasks that involve users role-

playing or playing a game. However, crowd-sourcing spoken dialogue data adds to

the complexity of the task by requiring that users provide voice input through a
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piece of audio recording equipment (microphone). The question that arises is ‘can

we crowd-source dialogue data collection where the majority of users might not

have high-quality audio recording equipment?’

2. It is also important to compare the quality of data collected from such

remote participants recruited through crowd-sourcing to the traditional in-lab

data collection approach. Users in crowd-sourcing environments generally do not

have access to high-quality audio equipment. In lab environments typically audio

recording microphones with high fidelity are present. While, it is clear that the

audio collected in-lab from high-quality equipment is better, it is not often clear

how much better the audio quality is compared to the crowd-collected audio data.

3. In traditional lab-based approaches, a research assistant is present to explain

the rules and answer questions about the task to the study participant. In a

crowd-based approach, this instruction channel is not present, resulting in reliance

on users following the instructions presented at the beginning of the task. It is

important also to study if the participants in crowd-sourcing environments follow

the instructions and complete the task. ‘Do crowd workers perform better compared

to in-lab participants?’ is also an important question that we address below.

4. Users in traditional lab approaches are paid remuneration for participation

in the study being conducted. This includes compensation for travel and time of

the participant. One of the appeals of the crowd-sourcing paradigm is the cost

savings achieved by compensating users for just their time. The costs comparison

of such an approach is not clear in the literature of dialogue systems research. So

the question that arises is ‘how much savings can be achieved by conducting such a

crowd-sourcing study compared to in-lab methods?’
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In this chapter, we answer these questions showing the cost savings and trade-

offs incurred. It is also an engineering endeavor to build a toolkit supporting the

process of spoken dialogue data collection.

Crowd-sourcing in dialogue data collection

In recent years, dialogue system researchers have been attracted to crowd-

sourcing approaches for a number of data collection tasks that support system

training and evaluation. Some of the tasks that have been explored include:

• transcription (Parent & Eskenazi (2010))

• capture of speech and text for training language models (Liu et al. (2010))

• eliciting utterance texts that correspond to specific semantic forms (Wang et

al. (2012))

• collecting text templates for generation (Mitchell et al. (2014))

• chat data between remote participants (Lasecki et al. (2013); Miller et al.

(2017); Schlangen et al. (2018))

• collecting survey-style judgments about a dialogue system’s performance

(Yang et al. (2010))

• collecting interactive dialogues in which a single user interacts with a live

dialogue system (Meena et al. (2014); Liu et al. (2010); Jiang et al. (2014))

In this chapter, I begin by discussing a web framework that supports crowd-

sourced collection of spoken dialogue interactions between two remote participants.

To the best of our knowledge, this is the first time that crowd-sourcing has been

applied to the collection of spoken dialogue interactions between two remote
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participants in support of dialogue systems research. Crowd-sourcing has been used

before to collect text-based chat dialogues (not spoken dialogues) between remote

participants (see e.g., Lasecki et al. (2013)). Such human-human dialogue data can

be quite valuable, especially in the early stages of designing and building a dialogue

system. Human-human dialogues provide examples of domain-specific language and

interaction that can inform a range of architecture and design choices in system

building, as well as serve as initial training data for system components (Lasecki et

al. (2013)). The decision to collect spoken dialogues between human interlocutors

online, rather than in a controlled lab setting, is a multi-factorial one. Some of the

important considerations include the introduction of browser-mediated interaction,

limitations in available modalities for interaction, potential changes in demographics,

data quality considerations, and the introduction of communication latency. This

chapter discusses the toolkit developed for the crowd-sourcing environment, data

collection experimental results, and advantages and limitations of collecting data

using the crowd-sourcing environment.

Using crowd-sourcing for collecting data between a human and an SDS is also

important to study. In this chapter, I also address a critical bottleneck in the

design and evaluation of SDS on the web for running crowd-sourcing studies: the

availability and cost of collecting human dialogue data for a new domain. When

designing, training, or testing a new dialogue system, the collection of in-domain

dialogue data, between a human user and a system prototype (human-agent) is

important. In-domain dialogue data is important because it provides examples of

domain-specific language and interaction that serve to highlight important semantic

and pragmatic phenomena in the domain, inform system design choices, and also

serve as training data for system components such as ASR, NLU, and NLG (Lasecki
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et al. (2013)). This chapter also discusses the development of an SDS for a crowd-

sourcing environment. Thus, this is the first work that develops a toolkit for

collecting crowd-sourced spoken dialogue data in support of development of an

incremental SDS in both human-human and human-agent conditions.

How crowd-sourcing can support the development of SDS components

Figure 3.1 shows the components of a typical SDS. It shows how crowd-sourcing

can be used to build corpora for training the components of the SDS pipeline. The

speech data collected is transcribed and can be used to train the ASR component.

The transcriptions are annotated with labels (e.g., dialogue acts, intents, slot-

values, etc.) and used to train the NLU module. In the case of multimodal SDS,

annotations for visual content can also be crowd-sourced. The interactions collected

are used to train the DM/policy to learn dialogue management behaviors. The

NLG module can be trained on the transcriptions of the human playing the role

of the agent in the human-human data. The TTS can also be trained on the

human speech collected through crowd-sourcing, although for building TTS it is

preferable to use clean audio, which depending on equipment may be hard to do

via crowd-sourcing (Georgila et al. (2012)).

The outline of this chapter is as follows: i) In Section 3.2, I discuss the domain

used for collecting data using crowd-sourcing. ii) In Section 3.3, I discuss the

software architecture of the system developed for collecting spoken conversations in

support of building incremental SDS. iii) In Section 3.4, I discuss the experiments

conducted for collecting data using crowd-sourcing. iv) In Section 3.5, I discuss

the results of comparing the data collected in the lab vs. the data collected using

crowd-sourcing. v) In Section 3.6, I discuss the extension of the framework for

collecting data using a crowd-sourced agent. I also discuss the data collected

45



ASR NLU

DM/Policy

NLGTTS

INTERACTION
IMAGES

TEXT {NLU_OP}

{DM_OP}TEXT

AUDIO

AUDIO

Speech transcription

[AUDIO-TEXT]

IMAGE LABELING

[SEGMENTATION, 

LABELING etc.]

Dialogue act (DA) labeling

[Segmentation, DA annotation, 

Slot-value labeling]

Text generation

[Surface realization]

Text to Audio

[Audio recording]

DB

Data 

processing

Crowd-

sourcing 

data for 
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Figure 3.1: The SDS components with the data required for training and evaluating
each component.

using the incremental SDS agent and observations from running the study using

crowd-sourcing. vi) Finally in Section 3.7, I discuss briefly the transcriptions and

annotations performed in this work.

3.2 Rapid Dialogue Game-Image (RDG-Image)

The research that motivates our crowd-sourced data collection involves a fast-

paced spoken dialogue game, in which interlocutors describe images to each other.

An example interaction, drawn from the lab-based Rapid Dialogue Game (RDG)

corpus previously collected (Paetzel et al. (2014)), is shown in Figure 3.2.

In this excerpt, one player (the Director) tries to describe the image depicted

with a red border to the other player (the Matcher), who sees the same array of

eight images on their screen but with their locations shuffled. The players are under

substantial time pressure to complete as many images as they can within a fixed
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Figure 3.2: An excerpt of human-human gameplay from our lab corpus. Segments
of participant speech are arranged to show their temporal extents, with time
increasing from left-to-right and top-to-bottom. Speech is segmented at all silent
pauses exceeding 300 milliseconds. Periods of overlapping speech are shaded in
pink. Periods containing silent pauses by a single continuing speaker are shaded in
light blue. Periods of silence at speaker switches are shaded in yellow.

time limit. Natural spoken dialogue in this domain includes frequent overlapping

speech (shaded in pink), low latency turn-taking (as when the Matcher asks how

many hands out? and receives the answer both hands 215 milliseconds later), mid-

utterance repairs, interruptions, acknowledgments, and other low-latency responses.
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Capturing such rapid spoken exchanges over the internet presents a unique challenge.

Particularly important factors for our dialogue system research, which aims to

replicate these rapid dialogue skills in dialogue systems, include the quality of

captured audio, the effect of communication latency on the interaction, the ability

to collect examples of excellent gameplay, and the naturalness of the interaction

and turn-taking. In addition to describing our web framework, this chapter presents

a case study of how these factors differ between the lab-based corpus we previously

collected and the crowd-sourced corpus we have collected with the new framework.

3.3 PMU System Architecture

In the dialogue research community, several researchers have recently taken

steps toward collecting dialogue data from systems deployed on the web. Jiang

et al. (2014) describe an architecture for capturing typed dialogue interactions in

a human-agent configuration, with user speech optionally recognized by Google’s

cloud-based ASR service. Meena et al. (2014) have also been attracted to crowd-

sourcing as a potential source of data, and reported a small-scale experiment in

this direction. Some research applications such as Let’s Go (Raux et al. (2005))

as well as commercial applications (Suendermann et al. (2011); Pieraccini et al.

(2009)) have collected telephone-based dialogue data from large user populations.

In recent times, systems for collecting data between remote participants, such as

HALEF (Suendermann-Oeft et al. (2015)) and ParlAI (Miller et al. (2017)), have

been developed. HALEF collects spoken dialogue data between remote participants

using telephony and HTML5, while ParlAI (as of June 2019) does not support

collection of spoken dialogue data. No such toolkits exist that support collection of
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Tomcat)

Figure 3.3: Pair Me Up (PMU) architecture in human-human mode.

conversational data between remote participants in support of building incremental

SDS.

HTML5 advancements and wide-scale browser compatibility have enabled the

collection of spoken interaction data between remote participants in recent times.

This enables the development of real-time conversational interfaces on the browser,

which earlier required the usage of proprietary tools such as Skype. Deploying

data collection systems on the web, and using crowd-sourcing to recruit remote

participants, offers the possibility of increasing the availability of participants while

simultaneously driving down the costs of data acquisition. We will now discuss the

architecture of the system used to collect the human-human interaction data over

the web. This system developed for collecting the human-human interaction data

will be referred to as Pair Me Up (PMU).
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CLIENT A

CLIENT B

s audio

Figure 3.4: Architecture of the Pair Me Up system.

The PMU architecture for human-human data collection is shown in Figure 3.3.

The system pairs two web users together and connects them into a shared game

session where they can converse freely and interact through their browsers. PMU

leverages recent developments in web technologies that support the development of

web-based dialogue systems. It shares this approach with recent dialogue systems

research, which makes use of emerging web technologies to enable spoken interaction

between a remote web user and an automated dialogue system. The framework

is designed to support additional games and tasks that can be embedded within

a browser. Also, the framework is designed to enable the capture of spoken

human-agent dialogues as well as human-human dialogues.
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In PMU, several HTML5 web technologies are used to build an interactive game

where the servers can initiate events on remote client browsers. Audio is streamed

between two remote client browsers, and audio is captured to a server database.

Two core technologies the system makes use of are WebSockets and WebRTC.

WebSockets enable two-way communication between the client and server, and they

specifically enable the server to push events such as image set changes to the clients,

and the clients to send audio and game events such as button clicks to the server,

without loading a separate URL. The streaming audio communication between the

remote clients uses a separate SimpleWebRTC (http://simplewebrtc.com/) channel.

SimpleWebRTC utilizes a signaling server process which is hosted on our servers

along with our web server (Apache Tomcat). The video channel is disabled for

the current study due to bandwidth limitations observed in pilot testing and the

fact that RDG-Image players primarily look at the images being described rather

than each other. Also, privacy considerations arise when the video is captured.

NIST guidelines for Personally Identifiable Information (McCallister et al. (2010))

view video and IP addresses as personally identifiable information, and we avoided

collecting this information.

Latency measurement protocol and data synchronization

In a lab-based study, network latency between machines can be minimized

through the use of high-speed LAN connections, and computer clocks can be

synchronized using a method such as the Network Time Protocol (Mills et al.

(2010)). In a crowd-sourced data collection, network latency may be both higher

and also harder to control. Additionally, security considerations rule out adjusting

a remote user’s system clock.
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Figure 3.5: The web interface of the game.

In our web-based game interface, latency can potentially affect the data we

collect in several ways. For example, there can be latency between when a remote

user initiates an action in their UI (User Interface) and when the server learns

that the action occurred. Conversely, if the server initiates an event in the user’s

UI (e.g., changing the image set), this event may not actually occur in the user’s

UI until some time later. Given the sensitivity of our research to having accurate

timing of dialogue events, we implemented a simple latency measurement and

synchronization protocol that allows us to (1) estimate the network latency between

each client and the server, and (2) translate between timestamps collected from

client machine system clocks and timestamps on our server.

Like the Network Time Protocol, our approach relies on the transmission of a

series of request/response packets between the server and client machines. The
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Event Known time of event on S Known time of event on C

a : Server S sends request ta
S

b : Client C receives request tb
C

c : Client C sends response tc
C

d : Server S receives response td
S

Figure 3.6: Latency measurement protocol.

protocol is illustrated in Figure 3.6. At the beginning of each image set in the

game, a request packet is sent from the server S to the remote client C. We denote

the server’s timestamp when this request is sent by taS , using a subscript for the

machine (S or C) whose clock generates the timestamp, and a superscript (a, b, c,

or d) for the four sequential events that occur as the request and response are sent

and received by each machine. As part of the exchange, Pair Me Up code running

in client C’s browser computes a client system timestamp tcC and immediately sends

this value with its response back to the server. The server receives the response at

tdS . With each request/response cycle, the server therefore has a measure of the

round trip latency of server-client communication: roundtrip = tdS− taS . Over the

course of a game this request/response cycle happens in the background many times

between the server and each of the remote clients. Figure 3.7 is an example of these

round-trip measurements for a typical crowd user in our data set. In order to relate

client event timestamps to server event timestamps, we make the assumption that

53



0 10 20 30 40 50 60

8
5

9
0

9
5

Index

n
tp

_
c
lie

n
t

Figure 3.7: The round-trip time (in milliseconds) of query/response exchanges for
one user. The round-trip time of a packet between the server and client is not
constant. The x-axis shows the index of the packets labeled in the order of time.
The y-axis shows the time taken by the packet for round-trip from the server to
client and back to server.

the client initiated its response at the midpoint of the server’s observed round-trip

time:

tcS = 1
2(taS + tdS)

This provides us with a series of timestamp pairs, tcC and tcS , for the same event

expressed on the client and system clocks. We then use linear regression to

estimate a translation between any arbitrary client timestamp teC for event e and

the corresponding server timestamp teS :

teS = w1 · teC +w2 (3.1)
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Of course, this translation can also be used bidirectionally to translate server

timestamps into corresponding client timestamps. To enable approximate synchro-

nization of all the collected data, all events originating on the two remote clients

(including user mouse clicks and image selections, button presses, page request

times, connection to partner, and audio chunk capture) are logged into the database

with the associated client timestamps. Events originating on the server (including

image set changes, countdown timer events, and score changes) are logged into

the database with the associated server timestamps. All data and events are later

approximately synchronized by translating all events onto a common timeline using

Equation 3.1. We can reconstruct all the events on the server timeline or user

timeline as desired. One limitation of our current approach is that network latency

is not completely constant, and thus a dynamic translation might achieve a more

accurate synchronization.

3.4 Experiments

In-lab subjects brought to the lab can be tutored and offered guidelines in person

by a research staff member which is often important to make the subjects follow

the protocols. The background noise can be controlled along with the quality of the

equipment involved. However, the main limitation is the bottleneck involved in the

number of subjects participating at any given time due to the difficulty involved in

parallelizing the task. The difficulty in the task of dialogue data collection in the

lab is further exacerbated as the experiments often require multiple participants to

be present at the same time and one or more participants do not show up. These

limitations can be addressed in the crowd-sourced environments due to a large

number of users present in these environments.
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Figure 3.8: The lifecycle of a web-based RDG-Image game HIT.

We recruited 196 individuals from Amazon Mechanical Turk (AMT) to par-

ticipate in the web-based RDG-Image game. The requirements to participate in

the HIT were: (i) a high speed internet connection (5 mbps download, 2 mbps

upload); (ii) the latest Google Chrome web browser; (iii) task acceptance of ≥ 92%;

(iv) previous participation in at least 50 HITs; (v) physical location in the United

States; (vi) must be a native English speaker; (vii) must have a microphone; and

(viii) must not be on a mobile device.1

Figure 3.8 illustrates the lifecycle of the HIT. As part of self-qualifying them-

selves, Turkers verified their internet connection speed using the speedtest.net web

service. Additionally, although this was not a strict requirement, they were strongly

encouraged to listen to their computer’s sound output using headphones rather

than speakers. This instruction was added after pilot testing, to help reduce audio

1This requirement is primarily due to the need for simultaneous display of 8 images.
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quality issues related to echo.2 After self-qualifying for the HIT, users proceeded

to the instructions, which were provided in both text and video format. The

instruction video explained the interface in detail. Users then followed a link and

waited until they were paired up with another Turker as a game partner. Access to

each Turker’s microphone and speakers was then requested from the users. The

users then made sure their audio connection worked well. Before playing the game,

they were shown a leaderboard where they could see how prior teams performed.

After the game, they returned to the AMT site for a post-game questionnaire.

During the data collection, pairing of participants happened on a ‘first come,

first served’ basis. Pair Me Up simply connected each player to the next player who

reached the same stage in the HIT, without any scheduling. To attract users, we

posted a number of HITs and waited until two consecutive Turkers could be paired

up to play the game. Our Pair Me Up server is currently able to support at least

12 simultaneous players (6 simultaneous games). We observed that this approach

worked well provided that a sufficient number of HITs was made available on AMT.

However, we avoided posting too many HITs at once to prevent exceeding our

server’s capacity. When too few HITs were available, waiting times for a partner

increased. Now we will discuss the results from these experiments.

3.5 Results

3.5.1 Data Collection Throughput

In total our web-based data collection took place over 17 days, and included

177 hours of aggregate HIT time by 196 Turkers. We expected each HIT to take

2When the users listen through speakers, it often happens that one of their microphones picks
up the speech output of their partner, and echo ensues. We currently do not attempt to cancel
this echo.
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a minimum of about 15 minutes to complete, including reading instructions, 9

minutes and 20 seconds of actual gameplay, and the post-game questionnaire. The

median time was nearly 38 minutes, which is about the same amount of time it

took for the participants in the lab to complete the RDG-Image game and fill out

all questionnaires. Most of the time spent by our web study participants was spent

waiting for a partner. In future work we would like to reduce this wait time by

pairing up partners more efficiently. The main bottleneck to parallel game collection

on our server is the actual live gameplay, which requires transmission and logging

of speech streams. Because our server can support at least 6 simultaneous live

games, and the actual dialogue gameplay requires only 9 minutes and 20 seconds

per pair, this translates into a potential data collection throughput for the Pair

Me Up framework on a single server of hundreds of spoken dialogue games per

day. In comparison, our lab-based data collection, which yielded 32 subject pairs,

took about a month to orchestrate and complete, due largely to the overhead

of individual subject recruitment and scheduling, as well as the impossibility of

parallelism given lab resources.

3.5.2 Audio Quality

In our lab-based corpus, audio was captured using high-quality microphones

and audio hardware, which were calibrated and adjusted by lab staff for each

participant. Additionally, our lab is generally a low noise environment that is

free of most distractions. By contrast, in our web audio data, we have very little

control over the participants’ audio hardware and ambient environments. We

observed captured audio to include a wide range of background noises, including

televisions, cats meowing, dogs barking, and mobile phones ringing, among other

distractions. Our primary use for this audio is through transcription and ASR, in
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support of dialogue systems research and development. We therefore assess audio

quality by way of its suitability for these purposes. We currently have transcribed a

subset of the web-based speech amounting to several hundred utterances. For this

subset, despite the variable audio conditions, we have encountered no difficulties

in transcribing the speech. To assess the audio quality in relation to ASR, we

selected a random sample of 105 utterances each from the web corpus and the lab

corpus. As part of transcription, these utterances were segmented from surrounding

speech (using silence regions exceeding 300ms) and manually transcribed. We

then calculated the ASR word error rate for both samples using Google’s ASR

(https://www.google.com/speech-api/v2/recognize), a broad-coverage cloud-based

industry speech recognizer which we have observed to have competitive performance

in recent ASR evaluations for dialogue systems at our institute (Morbini et al.

(2013)). In our corpora, the observed word error rate (WER) of 24.10 in ASR for

web-based audio is significantly higher (W=4647.5, p-value=0.04285, Wilcoxon

rank sum test) than the WER of 19.83 for lab-based audio. This increase in

WER of 4.27 for web-based audio provides perspective on the trade-offs between

controlled lab-based audio capture and crowd-sourced online audio capture for

dialogue systems researchers.

3.5.3 Effect of Latency on Game Performance and Synchro-

nization

We summarize the network latency for each user using the round trip time

observed in the latency measurement protocol described earlier. Higher values

indicate higher network latency that could adversely impact various aspects of

gameplay, for example UI responsiveness to user button clicks as well as the

speech channel. We observed a mean round-trip latency of 136.9ms (median
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108.0ms, standard deviation 84.9ms, min 29.0ms, max 464.0ms). To understand

how latency affects overall game performance, we investigated the relationship

between round-trip latency and score (number of correct images). We observed

a slight weak, but significant, negative correlation between latency and score

(r =−0.16,p < 0.05). Upon closer examination, the negative effect of latency on

score seems to be limited to those players with relatively high latency. We find no

significant correlation between score and latency for players whose latency is below

250ms (r = −0.06,p = 0.44). Comparing the population of low latency players

(latency <= 250ms, N = 177, mean score 50.7) to high latency players (latency

> 250ms, N = 19, mean score 40.5), we observe a significant difference in scores

(p < 0.05, Wilcoxon rank-sum test). We interpret this data as suggesting that if

latency is low enough, its effect on game score is negligible. Additionally, we used

our latency measurement and synchronization protocol to construct more than 20

synchronized videos that combine the two users’ speech streams with a recreation

of each user’s UI state at each moment (including images observed, button clicks,

etc.). If timeline correction using Equation 3.1 is not performed, such videos exhibit

numerous clear synchronization problems. After timeline correction, we have found

that the combined videos appear remarkably well synchronized. Upon observation

of these videos, we are unable to detect any remaining latency or synchronization

issues, and we view the data as sufficiently synchronized for our research purposes.

In future work we would like to further investigate the exact accuracy of data

synchronization achieved.
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Figure 3.9: Scatter plot of game scores vs. round-trip latency of all the users. The
points scored by the users with high speed internet connection (low mean latency)
is higher than the users with lower speed of internet connection.

3.5.4 Cost, Gameplay Quality, and Naturalness of Interac-

tion

We summarize the study cost, scores attained, and basic demographic data for

our two corpora in Table 3.1. From Table 3.1 we can see that the web-study data

is 7.8x less expensive per participant to collect (once the Pair Me Up infrastructure

is in place). In terms of acquiring examples of excellent gameplay, which is one of

our research requirements, we found that our web-study players scored significantly

higher than the players in lab (W = 5389, p= 0.01875, Wilcoxon rank sum test).
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Web Lab
N 196 64
Average Pay per player $1.915 $15
Scores(%) [Mean, SD, Min, Max, Median] 49.8, 13.1, 22, 78, 51 45, 13.0, 20, 68, 44
Age(%) [Mean, SD, Min, Max, Median] 31.3, 8.2, 19, 68, 29 36.6, 12.7, 18, 60, 34.5
Gender(%) [Female, Male] (%) 53.3, 46.7 55, 45

Table 3.1: Cost, scores attained, and demographic data for our web and lab studies.

The full explanation for this difference is unclear as there were several differences

between the web study and the lab study. One difference is that web-study

participants were incentivized with a bonus payment per correct image, while lab

study participants were paid a flat rate of $15 for participation. Demographic

differences between Turkers and Los Angeles area Craigslist users may also have

played a role; for example, our web-study participants were younger on average. In

any case, we conclude that it is possible to collect examples of excellent gameplay

for RDG-Image with a crowd-sourced data collection. All participants filled out

post-game subjective questionnaires, providing answers on a 5-point Likert scale.

We were especially interested in the perceived naturalness of the interaction and

the usability of the interface, and we present several observations in Figure 3.10.

All significance tests are Wilcoxon rank sum tests.

Web-study participants gave significantly higher ratings of the user interface

being intuitive and easy to use (Q1). They also gave higher ratings to the ease

of understanding the game rules (Q2) and it being easy to play the game with

their partner (Q5). These findings may be partially explained by the more detailed

instructions we provided for web users about the browser interface, including

the addition of video-based instructions. Demographic differences and possible

comfort in using a browser-based interface could potentially play a role as well.

In terms of naturalness of the interaction, the results were also favorable for the

web-based study. Despite our concern about network latency affecting interaction
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Figure 3.10: Subjective questionnaire results for questions related to interaction
naturalness and usability of user interface. Means and standard errors are shown for
all questions. (* indicates p <0.05, ** indicates p <0.01, *** indicates p <0.001).

naturalness, we observed no significant difference in ratings of the speed and flow of

communication between the web study and the lab study (Q6). In fact, web-study

participants gave significantly higher ratings to it being easy to play the game with

their partner (Q5), satisfaction with their score (Q4), and a rating of whether they

spoke the way they normally do with the partner they were paired with (Q3). The

fact that web-study participants scored higher than lab-study participants may

play a role in the perceived ease of playing with their partner and score satisfaction.

3.5.5 Discussion

We have presented a web framework called Pair Me Up that enables spoken

dialogue interactions between remote users to be collected through crowd-sourcing.

We have confirmed, for spoken dialogue interactions in the RDG-Image game, the

commonly observed pattern that crowd-sourced data collection over the web can be
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faster and much less expensive than data collection in the lab. At the same time,

we have explored several trade-offs in web-based vs. lab-based data collection for

dialogue systems research. In terms of audio quality, we have found an increase of

about 4% in ASR word error rate for web-based audio data. Such an increase may

be acceptable by many researchers in exchange for easier data collection. In terms of

network latency, we have found that while it is an important consideration, it does

not rule out natural real-time dialogue between the remote participants, and that

data can still be synchronized sufficiently for our purposes using a straightforward

latency measurement protocol. We have observed that the quality of gameplay, as

determined by scores achieved and several subjective assessments by Turkers, was

higher for our crowd-sourced study than in the lab.

In this chapter we have reported on a web-based framework that helps address

a critical data-collection bottleneck in the design and evaluation of SDS. We

demonstrated the viability of our framework through a data collection study in

which 196 remote participants engaged in human-human dialogue interactions

in an image matching game. We discussed several of the technical challenges

we encountered and some of the limitations in our current process for collecting

dialogue data over the web. In future work, it would be fruitful to address the

challenge of managing available computing resources better in order to further

reduce costs and accelerate data collection.

We are also interested in SDS that operate over the web. The incremental

architecture and the design choices involved in the development of such an agent

are not trivial. We extended the PMU framework to support the deployment of

an agent to collect data in a human-agent configuration. Now we will discuss the

modifications to the PMU framework to accommodate deploying an automated

agent over the web.
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Figure 3.11: Pair Me Up architecture in human-agent mode.

3.6 Extending to Human-Agent Data Collection

The agent mode for PMU is configured in a similar way to the human-human

mode, as shown in Figure 3.11. The user connects to the PMU server by following

a URL in their browser. A WebSocket connection is used to transmit user audio,

system audio, and game events between the remote user and the PMU server. The

PMU server runs both a web server process and the automated agent, and these two

communicate with each other through TCP sockets. The agent includes internal

modules for NLU and DM/Policy. The agent also communicates using TCP socket

connections to external processes for Voice Activity Detection (VAD), ASR, TTS,

and a database for logging.

Now we will discuss the design of the agents that are implemented to operate

on the web.
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Figure 3.12: Different versions of the agent.

3.6.1 Agent Design

Six agent versions

To support our research on incremental processing techniques, we ran a data

collection and evaluation involving six different versions of the agent. While other

researchers might not share our specific interest in these six versions, the desire

to compare several alternative system designs in an empirical way, ideally using

interactive human-agent data, is common to many research efforts.

In our case, our study was designed to evaluate three versions of incrementality

and two different policy optimization metrics against each other. The three incre-

mental versions consist of the fully incremental (FI), partially incremental (PI) and

non-incremental (NI) versions. Figure 3.12 illustrates the different versions and

their modes of operation. In the FI architecture, the ASR, NLU, and DM/Policy

are all operating incrementally after every additional 100ms of user speech. This

setup enables the agent to give fast-paced feedback while the dialogue partner is

still talking. For the PI version, only the ASR is operating incrementally; the NLU

and DM/Policy wait for a VAD segment (inter-pausal unit) to finish before they

start processing. Here, the agent cannot interrupt the user, but is still able to

give a quick response once a pause is detected. In the NI architecture, the ASR,

NLU, and DM/Policy are all operating on complete VAD segments as input, which
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increases the delay between the end of the user’s speech and the beginning of the

agent’s response.

Additionally, we optimized policies using two different optimization metrics,

which we denote simply A and B in Figure 3.11. The details of the two optimization

metrics are omitted; their technical rationale and motivation is beyond the scope of

this chapter. Together, the incrementality type and policy type variations creates a

3x2 study design, for a total of six agent versions to evaluate.

An ability to evaluate so many different agent prototypes empirically is valuable

for many research questions, but it also confronts researchers with the difficulty of

evaluating them with a significant number of participants in a tight timeframe and

with limited financial resources.

The agent’s internal modules are designed in a way that the agent can easily

switch between different policies and incrementality types. It only requires the PMU

server to send information about the policy version to use in the beginning of a game

round. The agent can even handle interactions in different versions of incrementality

simultaneously. The ASR cannot however switch between incremental and non-

incremental processing at run-time, which means one instance of the ASR can only

serve one version of incrementality.

3.6.2 Crowd-Sourced Data Collection Using Agent

200 native English speakers aged over 18 were recruited on Amazon Mechanical

Turk (AMT) to participate in the study. 25 of them were paired with another

human (25×2), and 25 played with each of the six versions of the agent (25×6).

The study was conducted over a period of 10 days. Table 3.2 summarizes the

participant demographics in the study.
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Figure 3.13: The steps undergone by the users during the study.

The study was conducted entirely over the internet. The protocol involved

in recruiting and filtering the participants to guarantee congenial data for the

human-agent condition is shown in Figure 3.13 and discussed in the rest of this

section.

AMT filters users. AMT is able to apply certain filtering criteria for the

participants. We had AMT apply the following criteria: (i) Participants have an

acceptance rate equal to or greater than 92% in their previous Human Intelligence

Task (HIT) participations; (ii) previous participation in at least 50 HITs; (iii)

physical location in the United States or Canada.

Participant’s self qualification. The users who AMT qualified for the HIT

were provided instructions to participate only if they met the following criteria: (i)

must have the latest Google Chrome web browser; (ii) must be a native English

speaker; (iii) must have a microphone; (iv) must not be on a mobile device; (v)

must have a high speed Internet connection (5mbps download, 2mbps upload).

Additionally, users were asked to use earbuds or headphones rather than external
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speakers, which helps prevent their microphone picking up sounds from their own

speakers.

Users read and watch game rules. The rules of the game are explained in

text and video format. The users are then led to a consent form web page where

participants read the consent form and decide if they want to participate or

not. The users enter their ID and submit their consent.

Filter users with high latency. To prevent certain users with problematic

network latency from participating, we measure the network latency between the

user and our server. 24% of the users who consented to the experiment did not

qualify at this stage due to high latency or highly variable latency.

Filter users with bad audio setup. The users in the next step were made

to listen to an audio file and transcribe it. If the transcriptions were wrong,

the users were disqualified. This is to make sure that the users had a functioning

speaker/headphone set up. The users then had to speak three pre-selected sentences

in their microphone. The ASR transcribes the spoken audio and if the user had at

least one word right from the sentences, the users were qualified, else disqualified.

16.8% of the users got disqualified at this step due to a ‘bad audio set up’.

The qualified users play the game with the agent. 28% of the users who

qualified from the previous stage did not finish playing the game with the agent.

It happened that sometimes Turkers closed the browser or otherwise stopped

participating for reasons we could not discern. After the game, the users were made

to answer an exit questionnaire. After answering the questionnaire the users

were instructed to return to AMT and asked to submit the HIT.

Posting the HITs for users to complete was managed manually for this study.

The users were given 40 minutes to complete the task.

69



Agent Human
N 150 25
Female (%) 54.7 44
Age (yrs)
Mean 31.12 31.12
Median 28 28
SD 10.2 10.4

Table 3.2: Demographic data for the 175 human directors, based on whether the
matcher was an agent or another human.

Technical challenges encountered

We faced several technical challenges in achieving this data collection. The

challenges can be categorized into three main categories.

Filtering out users based on latency. Latency can potentially affect the

collected data. We filter out the users with high latency using the protocol discussed

in Section 3.3.

Dealing with effects of variable latency. Even with the thresholds mentioned

in the previous section, transient fluctuations in network latency can sometimes

occur, and we found we needed a special mechanism to ensure the integrity of the

audio channel. Audio packets are recorded and sent to the PMU server from the

client’s browser in chunks of approximately 100ms. Each chunk is sent separately,

and is subject to variable transit time due to varying network latency from moment

to moment. The order of these packets is thus not guaranteed and they can arrive

out of order. For instance, if the audio packets A, B, C are recorded at times t,

t+100ms, t+200ms respectively, it is possible for the server to receive them in order

A, C, B. If not corrected, this order violation would corrupt the captured audio

waveform and potentially degrade ASR and system performance. To overcome this
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issue, we used an auto-incrementing sequence ID that was appended to each audio

packet before it left the user’s browser. On the server, we monitor these sequence

IDs to make sure that the audio packets either arrive in order or are reordered

appropriately by the server.

Managing server load. Even though the agent was designed to handle multiple

users at a time, we found in pilot testing that processor and memory usage by the

system (agent, web server, database, ASR) was sometimes too high to support

low-latency gameplay by multiple simultaneous users on the available hardware.

We therefore decided to limit the agent to one user per server to avoid this issue

affecting gameplay, and deployed the system on a commercial cloud-hosting provider

using six different servers. Our study could thus support up to 6 simultaneous users.

HITs were kept active for all 6 servers throughout the study. A feature of AMT

HITs is that the they are no longer available to others if the HIT is being worked

on by a participant. Due to the high attrition rates of participants at various steps

in the HIT (Figure 3.13), sometimes a server was left idle for the maximum HIT

completion time of 40 minutes. We did not attempt to build a resource management

system to enable more efficient use of our computing resources.

3.6.3 Analysis of Crowd-Sourced Study Cost

Table 3.3 shows several types of measured costs that were incurred in this

web-based study (Web column). It also includes, for comparison, an estimate of

what the corresponding costs would be for a lab-based human-agent study (Lab

column). The costs in Table 3.3 for running the study in the lab environment are

estimated based on the human-human lab study.
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Web Lab

Participant Fees $1.24 $15
Staff Time per 2.5min ∼35min
Participant
Cost of Server Time $0.72/hour/machine –
Participant Time 1193.1 sec ∼1800 sec

Table 3.3: Comparison between studies in the lab and web. Estimated numbers
are indicated by ∼.

Participant fees. The web users were compensated an average of $1.24

(Max=0.56, Min=0.04, SD=0.12) (N=150) per player when interacting with the

agent. In the lab, a payment of $15 was granted for 30 minutes of participation in

the human-human study. An incentivized payment based on score, as in the web

study, might further increase the cost.

Staff time per participant. To manage the HITs on the web required about

2.5 minutes of staff time per participant. In the lab, a staff member needs 30

minutes plus about 5 more minutes per participant for preparing the lab and the

recording equipment.

Cost of server time. For the 150 successful human-agent participants, the

servers in this study were actually used for a total of 49.71 hours. The 50 human-

human participants required approximately an additional 20 hours of server time.

However, due to inefficiencies in our process, during the study, the six servers were

kept active for 10 days (1440 server hours). Each server hour costs $0.72. In the lab,

the hardware expenditures for a similar study would be highly dependent on the

researcher’s environment, but they include the cost of a computer and high-quality

audio equipment (about $800).

Participant time. The mean total gametime on the web was 275 seconds, but

mean participant time was 1193.1 seconds. The additional time was spent by the

users on validation steps and answering the questionnaire. In the lab, we estimate
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that participants would need about 30 minutes for completing the study, including

reading and signing the consent form, reading the game rules, playing the game,

and answering the questionnaire in the end. In practice, the process takes a little

more time in the lab as there is additional time needed for the staff member to greet

the participant, manually start the software, adjust the microphone placement,

answer any questions, etc.

Overall, it can be seen that this crowd-sourced, web-based approach to human-

agent dialogue collection offers potential reductions in several types of costs, includ-

ing substantial reductions in participant fees and staff time per participant.

3.6.4 Limitations

There are several limitations in the way this study was conducted. In the

human-human condition, one of the major hurdles is the waiting times involved in

creating pairs, which can sometimes be measured in hours. To try to streamline

the pairing process, in pilot testing we attempted several methods. We put up

a calendar scheduling system where the users could mark their availability, with

time slots provided every 30 minutes. Users could avoid waiting to make a pair by

selecting a time when another user had stated they were available. However, we

found many Turkers would select a time slot but then not show up at the specified

time. Another technique we tried was a variant of a calendar where the users were

paid $0.05 to mark their availability and to then show up at that time. However,

again many Turkers would not show up at the appointed time. We finally adopted

a first-come, first-served method that paired consecutive participants. Although

this method was relatively slow, as individuals had to wait until a pair could be

formed, and had high attrition rates, it was found to work sufficiently well to obtain

25 human-human pairs.
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In the human-agent condition, the primary limitation was that there was a large

amount of idle system time across our six servers (totaling to about 1370 server

hours). This suggests that we had unmet capacity which could have been used to

support additional dialogues, or alternatively, we could have used fewer servers to

support the same number of users (thus reducing hosting costs). This idle time

is related to the high attrition rates (Figure 3.13) and non-uniform participant

presence on AMT during the times when our HITs were active. It would be fruitful

to tackle these issues by optimizing our HIT and qualification processes in future

work.

3.7 Other Pre-processing Steps

Once the audio data is collected, it is necessary to transcribe and annotate this

data to aid the process of model building. The audio data is either transcribed

automatically or using crowd services such as AMT. In either of the cases, it is

important to correct the transcriptions for errors. Figure 3.14 shows the interface

used by an expert to correct the transcriptions. The data needs to be annotated

with labels (such as dialogue acts) when these labels can not be automatically

extracted. In Chapter 6, we will discuss the annotation scheme and the interface

used. Once the data is transcribed and annotated it is ready for building models.

In the next chapter, I will discuss the process of policy building in incremental

spoken dialogue systems.

3.8 Contributions

In this chapter, I discussed the contributions made towards building an incre-

mental SDS.
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Figure 3.14: The transcription interface used to transcribe data using crowd-
sourcing.

The PMU framework is one of the first in a limited number of data collection

frameworks that utilize the HTML5 paradigm towards building a crowd-sourced

spoken dialogue corpus. In fact, to our knowledge, the PMU framework is the only

framework in the literature that can support collecting spoken dialogue data on the

web for building incremental SDS. The PMU framework can be used for collecting

both human-human and human-agent data. HALEF (Suendermann-Oeft et al.

(2015)) and ParlAI (Miller et al. (2017)) are two recently developed frameworks

for collecting conversational data on the web. However, ParlAI only supports

text-based dialogue (as of June 2019), and HALEF is not designed to capture

timing information which is essential for building incremental SDS.

We showed that by utilizing the crowd-sourcing paradigm, we can not only

collect spoken dialogue data but also save a significant amount of time and money

in the process. This is the first work in the literature showing such comparison

between data collected in the lab and via crowd-sourcing environments. The users

on crowd-platforms were found to be more competitive in the task and scored more

points compared to the in-lab participants. The users could also complete the task

with minimal supervision. These results could help dialogue researchers leverage

the crowd-based data collection paradigm and save time and money in the process
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with a guarantee of collecting a quality spoken dialogue corpus. The work presented

in this chapter has been published in Manuvinakurike et al. (2015), Paetzel et al.

(2015), and Manuvinakurike & DeVault (2015).
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Chapter 4

Eve: An Incremental Spoken

Dialogue System

“Truth is much too complicated to allow anything but approximations.”

– John von Neumann, Mathematician, Physicist, Computer Scientist

4.1 Introduction

In this chapter, I discuss the development of the RDG-Image agent called Eve

and present a study showing the importance of incrementality.

4.1.1 The RDG-Image (Rapid Dialogue Game - Image)

In the RDG-Image, one person acts as the Director and the other as the Matcher.

Players see a set of eight images on separate screens. The set of images is exactly

the same for both players, but they are arranged in a different order on the screen.

Image sets include pets (Figure 4.1), fruits, bicycles, road signs, and robots, among

others. One of the eight images is randomly selected as a target image (TI) and it is

highlighted on the Director’s screen with a thick red border as shown in Figure 4.1.

The goal of the Director is to describe the TI so that the Matcher is able to

uniquely identify it from the distractors. For example, the Director might say

simply the dog for the TI in Figure 4.1. The Director and Matcher are able to talk

back-and-forth freely in order to identify the TI. When the Matcher believes he has
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Figure 4.1: Browser interface for the Director. The target image is highlighted by
a red border. The Next Question button moves on to the next target.

correctly identified the TI, he clicks on the image and communicates this to the

Director who has to press a button to continue with the next TI. The players also

have the option to skip a TI if desired. The team scores a point for each correct

guess, with a goal to complete as many images as possible.

Each team participates in 4 main game rounds. In this study, the roles remain

the same for the players across all four rounds. Our agent is always in the Matcher

role in this study. The maximum number of TIs within each round is 12, and the

rounds have a variable duration ranging from 45 to 60 seconds. The time limit

for each round was chosen based on analysis of the sub-dialogues for that round’s

image sets in our earlier game corpora (Paetzel et al. (2014); Manuvinakurike &

DeVault (2015)). The time limit was explicitly set to prevent participants in this
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study from exhausting the 12 images in a round before they run out of time. In

this way, the speed and accuracy of communication are always limiting factors to

higher scores1. The participants never run out of available target images within a

round.

One game in this study consists of one training round, during which participants

get comfortable with the interface and (if playing with one of our agents) the agent’s

interaction style, their partner, plus four main game rounds which are scored. The

maximum game score is therefore 48 points (4*12). Following our approach in

Manuvinakurike & DeVault (2015), participants are incentivized to score quickly

with a bonus of $0.02 per point scored. To keep the game fun and challenging,

image sets become more difficult over time.

4.2 Observations of Human Matchers

Two corpora of human-human gameplay have previously been collected for

the RDG-Image game, including the RDG-Image lab corpus (collected in our

lab) (Paetzel et al. (2014)) and the RDG-Image web corpus (collected on the

web) (Manuvinakurike & DeVault (2015)). These corpora were used to design our

automated agent.

A first step was to identify the most common types of Matcher utterances

and behavior in our lab corpus. To support this analysis, 21 dialogue acts (DAs)

were defined. The most important DAs for our automated Matcher agents are

Assert-Identified, used for utterances such as Got it! that assert the TI has been

identified, and Request-Skip, used for utterances such as Let’s move on that ask

the Director to advance to the next TI.

1In earlier studies (Paetzel et al. (2014); Manuvinakurike & DeVault (2015)) we used longer
time limits, and players could sometimes run out of available images.
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Figure 4.2: Timeline of the processing order of the modules in the three different
versions of incrementality.

34 human-human games were manually transcribed and annotated for dialogue

acts (DAs) by a human annotator, resulting in 5415 annotated DAs. The inter-

annotator agreement, measured by Krippendorf’s alpha, is 0.83. 40.70% of all

Matcher DAs were Assert-Identified, and this is by far the most common DA by the

Matcher. For the Matcher, this is followed by 15.83% of DAs which are annotated

as Out-of-domain DAs such as laughter or meta-level discussion of the game. All

other Matcher DAs occur in less than 6.5% of DAs each.

Our analysis of these annotations revealed that, typically, the Matcher simply

listens to the Director’s continuing descriptions until they can perform an Assert-

Identified, rather than taking the initiative to ask questions, for example. The top

of Figure 4.3 shows a typical image subdialogue.

4.3 Design of the Agent Matcher

Based on our observations of human Matchers, we focused our design of Eve on

the Assert-Identified and Request-Skip acts. Request-Skip is a move not often used

by Matchers in human-human gameplay, where teams tend to take additional time

as needed to agree on each image, and where teams eventually, score a point for

92-98% of the TIs they encounter (depending on the image set). We anticipated

that Eve might struggle with certain images or image sets, because its NLU would
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be data-driven and its understanding limited to previously seen description types.

Eve is therefore designed to use Request-Skip strategically if trying to score on the

current TI appears not to be a good use of time.

4.3.1 Training Data

To train our agent, the 16 image sets containing the most training examples per

set were chosen from the RDG-Image lab and web corpora. Additionally, two sets

of simple geometric shapes from the lab corpus were selected to serve as a training

round in this study. The lab corpus includes 34 games with 68 unique participants

and 1877 image subdialogues. The web corpus includes 179 participants (some of

them in multiple games) and 2788 image subdialogues. In our total training data,

on average, there are 259.17 image subdialogues per image set and 32.40 per image.

4.3.2 Voice Activity Detection (VAD), Automatic Speech

Recognition (ASR)

Audio is streamed from the user’s browser to our voice activity detector, which

uses the Adaptive Multi-Rate (AMR) codec 3rd Generation Partnership Project

(2008) to classify each incoming 20ms audio frame as containing voice activity or

not. The VAD works incrementally in all versions of our agent. It emits voice

activity events and delivers segments of detected speech (in units of 100ms) to the

ASR.

Our ASR is based on Kaldi (Povey et al. (2011)) and is specifically adapted from

the work of Plátek & Jurčíček (2014), which provides support for online incremental

recognition. Discriminative acoustic models are trained using a combination of our

in-domain audio data and out-of-domain audio using Boosted Maximum Mutual

81



Information (BMMI) with LDA and MLLT feature transformations (Plátek &

Jurčíček (2014)). Statistical language models are created using our transcribed

data.

Incremental ASR. In versions of our agent with incremental ASR, detected

user speech is streamed into the ASR every 100ms for online decoding, and incre-

mental (partial) ASR results are immediately computed and sent to the NLU and

policy modules. Incremental ASR is illustrated at the left of Figure 4.3. It is used

in the fully incremental and partially incremental versions of our agent, which are

illustrated in Figure 4.2(a) and (b).

Non-incremental ASR. In the non-incremental version of our agent (see

Figure 4.2(c)), detected user speech is buffered until the VAD segment is concluded

by the VAD. At that point, all speech is provided to the ASR and the final ASR

result is computed and provided to the NLU and policy.

4.3.3 Natural Language Understanding (NLU)

Our NLU operates on 1-best text outputs from the ASR. At each time t, all

the 1-best texts for the current TI (i.e., spanning multiple VAD segments) are

concatenated to form a combined text dt which we call the image subdialogue text.

For example, at time t= 2.72 in Figure 4.3, the NLU input is dt = uh okay a rock.

Prior to classification, stop-words are filtered out.2 This process yields for

example the filtered text filtered(uh okay a rock) = rock. From the filtered text,

unigrams and bigrams are calculated. To reduce overfitting, only those unigrams

and bigrams which occur more than three times in our training corpus are kept.

The remaining unigrams and bigrams are used as input for the classifiers. We also

2The stop-word list is based on http://jmlr.org/papers/volume5/lewis04a/a11-smart-stop-
list/english.stop and extended by domain-specific stop words.
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considered other features like text length and number of pauses, but they did not

significantly increase the classification accuracy.

A separate classifier is trained for each image set. The approach is broadly

similar to DeVault et al. (2011b), and each partial ASR result is probabilistically

classified as one of the eight TIs. The training data maps all the image subdialogue

texts in our corpora for that image set to the correct TI. To select the classifier

type, Weka (Hall et al. (2009)) was used on manually transcribed data from the

RDG-Image lab corpus. Multiple classifiers were tested with 10-fold cross validation.

The best performance was achieved using a Naive Bayes classifier, which classified

69.15% of test instances correctly. Maximum Entropy classification performed

second best with 61.37% accuracy.

4.3.4 General Form of Eve’s Dialogue Policies

Eve’s dialogue policies take the following form. Let the image set at time t be

It = {i1, ..., i8}, with the correct target image T ∈ It unknown to the agent. The

maximum probability assigned to any image at time t is P ∗
t = maxj P (T = ij |dt).

Let elapsed(t) be the elapsed time spent on the current TI up to time t.

Eve’s parameterized policy is to continue waiting for additional user speech

until either her confidence P ∗
t exceeds a threshold IT, or else the elapsed time

on this TI exceeds a threshold GT. The identification threshold (IT) represents

the minimal classifier confidence at which Eve performs an Assert-Identified (by

saying Got it!). The give-up threshold (GT) is the time in seconds after which Eve

performs a Request-Skip (by saying I don’t think I can get this one. Let’s move on,

I just clicked randomly.).

Eve’s policy is invoked by different trigger events depending on the incremental

architecture. In the fully incremental (FI) version (Figure 4.2(a)), the policy is
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Figure 4.3: An image subdialogue from the RDG-Image lab corpus. The upper part
shows the manual DA annotation. The lower part shows information used in the
eavesdropper policy optimization. For brevity, we include only partial ASR results
that differ from the previous one. In the middle and on the right are the NLU’s
evolving classification confidence, elapsed time, and correctness of the NLU’s best
guess image.

invoked with each new partial and final ASR result (i.e., every 100ms during

user speech). In the partially incremental (PI) and non-incremental (NI) versions

(Figure 4.2(b) and (c)), the policy is invoked only after a new final ASR result

becomes available. Each time Eve’s policy is invoked, Eve selects an action using

Algorithm 1.3 Eve’s policy allows the agent to make trade-offs that incorporate

both its confidence in its best guess and the opportunity cost of spending too

much time on an image. In Section 4.4, we describe how we optimize the numeric

parameters IT and GT in these policies.

3Requiring |filtered(dt)| ≥ 1 prevents Eve from ever saying Got it! before any content words
(non-stop words) have been received from the ASR.
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Algorithm 1 Eve’s dialogue policy
if P ∗

t > IT & |filtered(dt)| ≥ 1 then
Assert-Identified

else if elapsed(t)<GT then
continue listening

else
Request-Skip

end if

4.3.5 Text-to-Speech Synthesis (TTS)

Eve uses NeoSpeech4 TTS. All Eve utterances are pre-synthesized to minimize

output latency.

4.3.6 Discussion of Incremental Architectures

The non-incremental (NI) version serves as a baseline for the performance if none

of ASR, NLU, or policy are carried out incrementally. The partially incremental

(PI) version helps quantify the benefits that come from reducing system latency

through online decoding in the ASR. The fully incremental (FI) version explores

the benefits of reacting more continuously during user speech.

4.4 Policy Optimization

Optimization of the parameters IT and GT in Algorithm 1 is done using a

metaphor of the agent as an eavesdropper on human-human gameplay. To train our

agent, we start by imagining the agent as listening to the speech in human-human

image subdialogues from our corpora. We imagine that as the human Director

describes an image to his partner, our eavesdropping agent simulates making its

4http://www.neospeech.com/
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own independent decisions about when, if it were the Matcher, it would commit to

a specific TI (by saying “Got it!”) or request an image skip (by saying “Let’s move

on..”).

For example, in Figure 4.3, we visualize the ASR results that would be arriving

in the FI architecture, and the time at which they would be arriving, as this human

Director describes the TI as uh okay a rock uh falling apart on one side. In the

middle and right, we visualize what the agent’s NLU confidence would be in its

best guess (P ∗
t ) as these ASR results arrive. At the right, we show that this best

guess is incorrect until time 2.72.

In our optimizations in this study, we assume that the objective metric to be

maximized is points per second (points/s). The key idea in this optimization is

that each value of parameters IT and GT in Algorithm 1 translates into a specific

simulatable agent response and outcome for each Director description of a TI in our

corpus. For example, if IT=0.3 and GT=5, then in the figure’s example the agent

would commit to its best interpretation at time 2.72 by performing Assert-Identified

(“Got it!”). The agent would turn out to be correct and score a point. The time

taken to score this point would be 2.72 seconds, plus some additional time for the

Matcher to say “Got it!” and for the Director to click the Next Question button in

the UI (see Figure 4.1). Our agent needs 0.5 seconds to say “Got it!”, and we add

an additional 0.25 seconds equal to the mean additional Director click latency in

our corpora. The total simulated time for this image is therefore 2.72+0.5+0.25 =

3.47 seconds.5

If one simulates this decision-making across an entire corpus, then for each

value of IT and GT, one can calculate the total number of points hypothetically

5Note that when our agent performs Request-Skip, it is still able to select its best guess image,
and so it may still score a point for that image (as human players can).
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Fully
Incre-
mental
(FI)

Partially
Incre-
mental
(PI)

Non-
incremental
(NI)

Image set IT GT IT GT IT GT
Pets 0.7 8 0.52 8 0.89 2
Zoo 0.61 8 0.58 3 0.23 4

Cocktails 0.88 8 0.48 1 0.44 10
Bikes 0.80 18 0.49 7 0.0 0

Figure 4.4: Identification threshold (IT) and give-up threshold (GT) in optimized
policies for four image sets. 14 additional image sets are omitted.

scored, total time hypothetically elapsed, and thus an estimated performance in

points/s for the policy. As the parameter space is tractable here, we perform grid

search across possible values of IT (step .01) and GT (step 1) and select values that

maximize total points/s. We carried out this optimization for each combination

of image set and incrementality type. Our optimization accounts for when ASR

results would become available in a given incremental architecture.

Perhaps the biggest concern with this approach is that it assumes that human

Directors, when interacting with the agent, would produce similar utterances to

what they produced when interacting with a human Matcher. We have two reasons

for believing this is true enough. First, as discussed in Section 4.2, the Matcher’s

utterances in human-human gameplay typically play a limited role in changing

the Director’s descriptions. Second, our results in live human-agent interactions,

reported in Section 4.6, confirm that high performance can be achieved under this

assumption.

In Figure 4.4, the learned values for IT and GT are compared over four sample

image sets (from among the 18 that are trained) in various incrementality conditions.

An interesting observation is that the optimized dialogue policy changes as the

incrementality type changes. For example, the FI policy for pet images (depicted in
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Fully Incremental Partially Incremental Non-Incremental Human
Points/s points Points/s points Points/s points Points/s points

Pets 0.185 182 0.151 188 0.151 154 0.069 227
Zoo 0.220 203 0.184 196 0.177 193 0.154 243

Cocktails 0.118 153 0.103 137 0.102 172 0.124 237
Bikes 0.077 126 0.073 147 0.071 100 0.072 223

Figure 4.5: Offline policy evaluation results for all three incrementality types and
four image sets. 14 additional image sets are omitted for space reasons.

Figure 4.1) will wait up to 8 seconds (GT) for the confidence to reach 0.7 or higher

(IT). The NI policy, on the other hand, will give up if confidence does not reach 0.89

within 2 seconds. Intuitively, one reason these policies can vary is that an ability to

understand and respond incrementally can reduce the risk associated with waiting

for additional user speech and ASR results. In the PI and NI versions, once the

user begins to speak, the agent must wait for the user to complete their (possibly

long) utterance before it can assess the (possibly unhelpful) new information and

respond. The decision to let the user speak is therefore relatively heavyweight. In

the FI version, the agent always has the option to listen to a little more speech and

reconsider.

4.4.1 Offline Policy Evaluation Results

Our eavesdropper framework allows policies to not only be trained, but also

evaluated in offline simulation, both in terms of total points scored and total

points/s (which is the direct optimization metric). An excerpt from our offline

evaluation results, using hold-one-user-out cross-validation, is shown in Figure 4.5.

In these offline results, the agent is sometimes able to achieve higher points/s than

our human Matchers did in human-human gameplay. This is true for some image

sets in all three incrementality types. In general, we also observe that simulated
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points/s decrease as the level of incrementality in the system decreases. Note that

the total number of simulated points achieved by these policies is generally less

than what human players scored; the agents optimized for points/s are less likely

to score a point for each image, but make up for this in speed. These offline results

led us to hypothesize that, in live interaction with users, the FI agent would score

higher than the less incremental versions in a time-constrained game.

4.5 Online Human-Agent Study

The data was collected using crowd-sourcing from 125 participants (discussed

in 3.6). Of the 125 participants, 50 were paired with each other (forming 25 human-

human pairs) and 25 were paired with each of the FI, PI, and NI agents. None

participated in our study more than once. From self-disclosure of the Directors,

50% were female, all were over 18 (mean age 31.01, std. 10.13), and all were native

English speakers.

After each game, participants answered a questionnaire that included basic

demographic questions and also asked for their judgments on various aspects of

interaction with their partner.

4.6 Human-Agent Evaluation Results

In this section, we summarize our user study results, many of which are visualized

in Figure 4.6. We evaluate our FI, PI, and NI agents by game score and by user’s

perceptions as captured in post-game questionnaires. Users responded to a range of

statements with answers on a five point Likert-scale ranging from Totally disagree

(0) to Totally agree (4). We compare the responses of the Director in human-human
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Figure 4.6: Scores and survey responses by condition (means and standard errors).
Significant differences in Wilcoxon rank sum tests are indicated by * (p < 0.05), **
(p < 0.005), and *** (p < 0.0005).

(HH) pairs to the responses of human Directors playing with our agent as Matcher.

All significance tests in this section are Wilcoxon rank sum tests.

Score (Figure 4.6a)). We report scores in U.S. dollars paid to participants

for correct TIs ($0.02/correct TI). The FI system achieved a mean score of $0.33

that is significantly better than the mean $0.25 for PI (p=0.01324) and the mean

$0.23 for NI (p = 0.001999). No significant difference in score was observed between

the PI and NI versions. These results suggest that, beyond incorporating online

decoding in the ASR to reduce ASR latency, also incorporating an incremental

NLU+policy is important to score maximization.
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Our FI agent’s performance in terms of score is quite strong, and comparable

to HH scores. Although the mean HH score of $0.36 was a little higher than that

of our FI agent ($0.33), the difference is not significant. The best FI score of $0.50

is higher than 76% of HH teams, and its worst score of $0.14 is higher than 20%

of HH teams. HH teams scored significantly higher than the PI (p = 0.03766)

and NI (p = 0.00755) versions of the system, which suggests the importance of

pervasive incremental processing to achieving human-like performance in some

dialogue systems.

Satisfaction with score (Figure 4.6d). Human participants were signifi-

cantly more satisfied with their score when working with a human Matcher than

with any version of our agent (for the FI version, p = 0.0372). Participants who

played with the FI agent were significantly more satisfied with their score than

those in the PI (p = 0.001863) and NI (p = 0.0172) conditions. These results

generally mirror our findings for game score, and score and score satisfaction are

clearly connected.

Perceived ease of gameplay (Figure 4.6b). Human partners were perceived

as significantly easier to play with than all agent versions. We observed a trend

(not quite significant) for people to consider it easier to play with the FI version

than with NI version (p = 0.05177).

Perceived efficiency (Figure 4.6c). Human partners were rated as signifi-

cantly more efficient than the FI (p = 0.03833), PI (p = 0.000064) and NI (p =

0.000073) agents. Among the agent versions, the FI agent was rated significantly

more efficient than PI (p = 0.0009283) and NI (p = 0.002189). This result echoes

previous findings of increases in perceived efficiency for incremental systems, though

here with a differing system architecture and task (Skantze & Hjalmarsson (2010)).
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Perceived understanding of speech (Figure 4.6e). Human partners

elicited the most confidence that the two players were understanding each other.

This perceived understanding of each other’s speech was significantly higher in FI

than in PI (p = 0.009997) and NI (p = 0.006177). It is interesting to consider

that the NLU in these three versions is identical, and thus the level of actual

understanding of user speech should be similar across conditions. We speculate

that the greater responsiveness of the FI system increased confidence that users

were being understood.

Perceived naturalness of user speech (Figure 4.6f). One of our survey

items investigated whether people felt they could speak naturally to their partner,

in “the way I normally talk to another person”. Human partners scored significantly

higher than all agent versions here. The FI agent scored significantly higher than

the NI agent (p = 0.03748).

4.7 Contributions

In this chapter, I presented the design, training, and evaluation of a high-

performance agent that plays the RDG-Image game in the Matcher role. Our

policy training approach allows the system to be optimized based on its specific

incremental processing architecture. In a live user evaluation, three agent versions

utilizing different degrees of incremental processing were evaluated in terms of game

performance and user perceptions. This is the first such study in the literature to

show that the most fully incremental agent achieves game scores that are comparable

to those achieved in human-human game-play, are higher than those achieved by

partially and non-incremental versions, and are accompanied by improved user

perceptions of efficiency, understanding of speech, and naturalness of interaction.
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The work presented in this chapter has been published in Paetzel et al. (2015). In

the next chapter, I will discuss how I applied reinforcement learning to improve

the policy developed in this chapter.
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Chapter 5

Incrementality with

Reinforcement Learning

“It doesn’t matter how beautiful your theory is, it doesn’t matter how

smart you are. If it doesn’t agree with experiment, it’s wrong.”

– Richard P. Feynman, Theoretical Physicist

In this chapter, I explore utilizing Reinforcement Learning (RL) algorithms for

modeling incrementality in the RDG-Image domain. RL approaches are scalable

as they have the potential to automatically learn a policy similar or better than

the policy presented in Chapter 4. In this chapter, I explore the application of

RL towards learning a dialogue policy and compare it to the very strong baseline

developed in Chapter 4.

5.1 Introduction

Reinforcement Learning (RL) is a popular approach for dialogue management

(see e.g., Henderson et al. (2008); Georgila & Traum (2011)). RL provides a frame-

work for learning new policies from data compared to rule-guided approaches that

require comparatively more significant human design and authoring. RL has been

applied to learning policies in incremental scenarios and has been shown to achieve

promising results (Dethlefs et al. (2012); Selfridge et al. (2013); Khouzaimi et al.

(2016)). However, past works have not compared RL approaches to strong baselines.
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In this chapter, I present the following contributions: provide an RL method for

incremental dialogue processing that performs better in offline simulations (based

on real user data) than the high-performance CDR baseline (based on carefully

designed rules) presented in Chapter 4. As we saw, this is a very strong baseline

which has been shown to perform very efficiently (nearly as well as humans) in

this dialogue game (Chapter 4). I also show that in an interaction study with

humans a version of Eve that uses the RL policy is qualitatively perceived as better

by users compared to the CDR version of Eve. In many studies that use RL for

dialogue policy learning, the focus is on the RL algorithms, the state-action space

representation, and the reward function. As a result, the rule-based baselines used

for comparing the RL policies against are not as carefully engineered as they could

be, i.e., they are not the result of iterative improvement and optimization using

insights learned from data or user testing. This is understandable since building a

very strong baseline would be a big project by itself and would detract attention

from the RL problem. In our case, there was a pre-existing strong CDR baseline

policy which inspired us to investigate whether an RL policy could outperform it.

One of our main contributions is that we provide a detailed comparison of the RL

policy and the CDR baseline policy, including information about how much effort

and time it took to develop each one of them. We also highlight the cases where

the RL policy performs better, and show that understanding the RL policy can

provide valuable insights which can inform the creation of an even better rule-based

policy.
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5.2 Eve’s Dialogue Policy

In Chapter 4 we saw that Eve’s policy decides between waiting and interrupting

the user with As-I or As-S to maximize the score in the game. Eve does this by

taking three actions: i) WAIT: Listen more in the hope that the user provides more

information; ii) As-I: Make the selection and request the next TI; iii) As-S: Skip

the current image set and request the next TI as it might not be fruitful to wait

more. Eve’s policy depicted in Algorithm 1 (see Chapter 4), uses two threshold

values namely identification threshold (IT) and give-up threshold (GT) to select

these actions. The IT and GT values are learned separately for each image set.

The IT learned is the least confidence value (P ∗
t ) above which the agent uses the

As-I action. GT is the maximum time the agent should WAIT before giving up on

the current image set and requesting the human Director to move on to the next

TI. As we discussed in Chapter 4, the IT and GT values are learned using an offline

policy optimization method called the eavesdropper simulation, which performs

an exhaustive grid search to find the optimal values of IT and GT for each image

set. In this simulation, the agent is trained offline on the HH (human-human)

conversations and learns the best values of IT and GT, i.e., the values that result in

scoring the maximum points in the game. For example, the optimal values learned

for the image set shown in Figure 5.6 were IT=0.8 and GT=18sec.

The Eve agent is very efficient and carefully engineered to perform well in

this task, and serves as a very strong baseline. In the real user study reported in

Paetzel et al. (2015), Eve in the HA (human-agent) gameplay scored nearly as well

as human users in the HH gameplay. Thus this study provides an opportunity

to compare an RL policy with a strong baseline policy that uses a hand-crafted

carefully designed rule structure (CDR baseline). Figure 5.6 shows an example
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from the HA corpus. The data used in the current work comes from both the HH

and HA datasets (see Table 5.1).

Branch # users # sub-dialogues
Human-Human lab 64 1485
Human-Human web 196 5642
Human-Agent web 175 7393

Table 5.1: Number of users and number of TI subdialogues used for our study.

5.2.1 Improving NLU with Agent Conversation Data

Obviously, the success of the agent heavily depends on the accuracy of the NLU

module. We investigated whether using HA data would improve the NLU accuracy

or not. Using data from all of the human Director’s speech for all the TIs in the

HH branch only, the NLU accuracy was found to be 59.72%. Using data from the

HA branch only resulted in a lower NLU accuracy of 48.70%. Combining the HH

and HA training data resulted in a higher accuracy of 61.89%. The improvement

associated with training on HH and HA data is significant across all sets of images1.

Thus, in this work we use the best performing NLU with the data trained from

both the HH and HA subsets of the corpus. The overall reported NLU accuracy

was averaged across all the image sets. The NLU module was trained with the same

method as in Chapter 4. Note that for all our experiments, 10% of the HH data

and 10% of the HA data was used for testing, and the rest was used for training.

Figure 5.1 shows an example of the NLU confidence values for the human Director’s

description as a function of time.

1All the significance tests are performed using student’s t test.
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IV: um it’s a big brown hamster 
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Figure 5.1: The NLU confidence curve for the human Director’s descriptions for
the TI highlighted with a red border.

5.2.2 Room for Improvement

Though the baseline agent is impressive in its performance there are a few

shortcomings. We investigated the errors being made by the baseline policy and

identified four primary limitations in its decision-making. Examples of these

limitations are shown in Figure 5.2, depicting the NLU assigned confidence (y-axis)

for the human TI descriptions plotted against the time steps (x-axis).

First, the baseline commits to As-I as soon as the confidence reaches a high

enough value (IT threshold), or As-S when the time consumed exceeds the GT

threshold. In Case 1 the agent decides to skip (As-S) because the time consumed

has exceeded the GT threshold, instead of waiting more which would allow for a

more distinguishing description to come from the human Director.

Second, its performance can be negatively affected by instability in the partial

ASR results. Examples of partial ASR results are shown in Figure 5.8. In Case 2,
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TI: H TI: A TI: B 

Yeah so it’s a gray cat with blue eyes   It’s a cat laying with eyes closed black Cat blue eyes on blanket black stripes like tiger 
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Figure 5.2: Examples where the agent can do better. The red boxes show the
wrong selection by the agent.

the agent could learn to wait for higher time intervals as the ASR partial outputs

become more stable.

Third, the baseline only commits at high confidence values. Case 3 shows an

instance where the agent can save time by committing to a selection at a much

lower confidence value.

Fourth, as we can see from Algorithm 1 presented in Chapter 4, the baseline

policy does not use “combinations” (or joint values) of time and confidence to make

detailed decisions.

Perhaps using RL can not only help the agent learn a more complex strategy

but could also provide insights into developing a better engineered policy which

would not have been intuitive for a dialogue designer to come up with. That is,

RL could potentially help in building better rules that would be much easier to

incorporate into the agent and thus improve its performance. For example, is there

a combination of time and confidence which is an effective As-I strategy, i.e., not
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committing at some initial time slices for high confidence values and committing at

lower confidence values as the user consumes more time?

5.3 Design of the RL Policy
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ASR partials 

Figure 5.3: Actions taken by the CDR baseline and the RL agent.

The incremental policy decision making is modeled as an MDP (Markov Decision

Process), i.e., a tuple (S,A,TP,R,γ). S is a set of states that the agent can be in.

In this task S is represented by (P ∗
t , tc) features where P ∗

t is the highest confidence

score assigned by the NLU for any image in the image set (P ∗
t 7−→ IR;0≤ P ∗

t ≤ 1)

and tc is the time consumed for the current TI (tc 7−→ IR;0≤ tc ≤ 45.0)2. The RL

learns a policy π mapping the state (S) to the action (A), π : S→ A, where A =

{As-I, As-S, WAIT} are the actions to be performed by the agent to maximize the

overall reward in the game. The As-I and As-S actions map to their corresponding

2Each round lasts a maximum of 45 seconds.
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utterances. The WAIT action corresponds to the agent listening to the user without

interrupting. R is the reward function and γ a discount factor weighting long-term

rewards. TP is the set of transition probabilities after taking an action.

When the agent is in state St = (P ∗
t , tc), executing the WAIT action results in

moving to state St+1 which corresponds to a new dt+1 which corresponds to the

new utterance and thus yielding new P ∗
t and tc for the given episode. The As-I and

As-S actions result in goal states for the agent3. Separate policies are trained per

image set similar to the baseline. The difference between the As-I and As-S action

is in the rewards assigned. The reward function R is as follows. After the agent

performs the As-I action, it receives a high positive reward for the correct image

selection and a high negative penalty for the wrong selection. This is to encourage

the agent to learn to guess at the right point of time. There is a small positive

reward of δ for “WAIT” actions, to encourage the agent to wait before committing

to As-I selections. No reward is provided for the As-S actions. This is to discourage

the agent from choosing to skip and scoring the points by chance, and at the same

time not penalize the agent for wanting to skip when it is really necessary. The

reward function for As-S prevents the agent from getting heavy negative penalties

in case the wrong images are selected by the NLU.

R =



+δ if action is WAIT

+100 if As-I is right

−100 if As-I is wrong

0 if action is As-S

3The time shown in the reported results as consumed by the RL policy for the current TI
includes a time offset of 750ms which is the sum of 250ms for the agent to say “got it” and 500ms
for the Director to request a new TI. This is included to maintain consistency with the baseline.
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In this work we use the Least Squares Policy Iteration (LSPI) (Lagoudakis &

Parr (2003)) RL algorithm implemented in the BURLAP4 java code library to learn

the optimal policy. LSPI is a sample efficient model-free off-policy method that

combines policy iteration with linear value function approximation. LSPI in our

work uses State-Action-Reward-State (SARS) transitions sampled from the human

interactions data (HH and HA). We use Gaussian radial basis value function (RBF)

representation for the confidence (P ∗
t ) and time consumed (tc) features. We treat

the state features as continuous values. The confidence values and time consumed

values are continuous in nature within the bounds defined i.e., 0.0≤ P ∗
t ≤ 1.0 and

0.0≤ tc ≤ 45.0. The basis function returns a value between 0 and 1 with a value of

1 when the query state has a distance of zero from the function’s “center” state.

As the state gets further away, the basis function’s returned value degrades to a

value of zero.

We run LSPI with a discount factor of 0.99 until convergence occurs or a

maximum of 50 iterations is reached, whichever happens first. We use 250k

available SARS transitions from the HH and HA interactions to train the policy.

The LSPI returns a Greedy-Q policy which we use on the test data.

Figure 5.3 shows the modus operandi of the policy in this domain. For every

time step the ASR provides a 1-best partial hypothesis for the speech uttered by

the test user. This partial speech hypothesis is input to the NLU module which

returns the confidence value (P ∗
t ). The time consumed (tc) for the current TI is

tracked by the game logic.
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pets zoo kitten cocktail bikes yoga necklace
PPS P PPS P PPS P PPS P PPS P PPS P PPS P

Baseline 0.22 37 0.28 27 0.14 14 0.18 23 0.09 13 0.20 3 0.20 4
RL agent 0.23 39 0.31 32 0.13 16 0.19 25 0.14 22 0.11 18 0.12 20

Table 5.2: Comparison of points per second (PPS) and points (P) earned by the
baseline and the RL agent on the test set.

5.4 Experimental Setup

For testing, we use the real user held out conversation data from the HH and

HA datasets. The IT and GT thresholds for the baseline Eve were also retrained

(Paetzel et al. (2015)) using the same data and NLU as used to train the RL

policy. Figure 5.3 shows the setup for testing and comparing the actions of the

RL policy and the baseline. Every ASR partial corresponds to a state. For every

ASR partial we obtain the highest assigned confidence score from the NLU, use

the time consumed feature from the game, and obtain the action from the policy.

If the action chosen by the policy is “WAIT” then we sample the next state. For

each pair of confidence and time consumed values we obtain the actions from the

baseline and the RL policy separately and compare them with the ground truth

to evaluate which policy performs better. Once the policy decides to take either

the As-I or As-S action then we advance the simulated game time by an additional

interval of 750ms or 1500ms respectively. This is to simulate the conditions in the

real user game where we found that users on average take 500ms to click the button

to load the next set of TIs, and the agent takes 250ms to say the As-I utterance

and 1000ms to say the As-S utterance. The next TI is loaded at this point and

then the process is repeated until the game time runs out for each user round.

4http://burlap.cs.brown.edu/
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5.5 Results

The policy learned using RL (LSPI with RBF functions) performs significantly

better (p<0.01) in scoring points compared to the baseline agent in offline simu-

lations. Also, the RL policy takes relatively more time to commit (As-I or As-S)

compared to the baseline.5 The idea of setting the IT and GT threshold values

in the baseline originally aimed at scoring points rapidly in the game, i.e., the

baseline agent was optimized at scoring the highest number of points per second

(PPS). The PPS parameter is a measure of how effective the agent is at scoring

points overall, and is calculated as the ratio of the total points scored by the agent

divided by the total time consumed. Table 5.2 shows the points per second and

the total points scored in some of the image sets by the baseline and the RL. We

can observe that the RL consistently scores more points than the baseline, however

this comes at the cost of additional time. By scoring more points overall than the

baseline, the RL also scores higher in the PPS metric (p<0.05). Table 5.3 shows

the total points scored and the total time spent across all users by the baseline and

the agent. Each set here refers to one round in a game.

Baseline RL
Set P t (s) P t (s)
1 96 510.8 107 528.1
2 75 525.0 85 537.9
3 42 298.9 74 595.2
4 49 531.9 76 592.3

Table 5.3: The points scored (P) and the time consumed (t) in seconds for different
image sets (Set).

Figure 5.5 depicts this result for an image set of bikes (images shown in Fig-

ure 5.6). We plot the total time spent by the agent and the total points scored.

5p=0.06; we cannot claim that the time taken is significantly higher but there is a trend.
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Figure 5.4: Decisions of the RL policy (in blue) vs. the baseline policy (in red).

Figure 5.5: The RL policy scores significantly more points than the baseline by
investing slightly more time (graph generated for one of the image sets).

Clearly, the RL policy manages to score more points than the baseline in a given

amount of time. In order to understand the differences in the actions taken by

the RL policy and the baseline policy, we plot on a 3 dimensional scatter plot, the
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Figure 5.6: Shows an example dialogue for an episode in the human-human corpus.

action taken by the policy for confidence values between 0 and 1 (spaced at 0.1

intervals) and the time consumed between 0s to 15s (spaced at 100ms intervals)

for one of the image sets (bikes). Figure 5.4 shows the decisions made by the RL

(in blue) compared to the decisions made by the baseline (in red). As we can see

there is not much variety in the decisions of the baseline policy; it basically uses

thresholds (see Algorithm 1 presented in Chapter 4) optimized using real user data.

Below we summarize our observations regarding the actions taken by the RL policy.

i) Regardless of whether the confidence value is high or low, the RL policy learns

to wait for low values of the time consumed. This may be helping the RL policy

to avoid the problem illustrated in Case 2 in Figure 5.2, where instability in the

early ASR results for a description can lead an incorrect guess to be momentarily

associated with high confidence. The RL policy is more keen on waiting and

decides to commit early only when the confidence value is really high (almost 1.0).

ii) Requiring a lower degree of confidence when the time consumed is high was

also found to be an effective strategy to score more points in the game. Thus the

RL policy learns to guess (As-I) even at lower confidence values when the time

consumed reaches high values. This combination of time and confidence values

helps the RL agent perform better w.r.t. points and consequently PPS in the task.
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It is also important to note that the agent does not wait eternally to make its

selection. The human TI descriptions are collected from real user gameplay that

lasts for a limited number of time steps. That is, the maximum number of points

that the RL policy can score in simulation is limited by the number of images

described in the real user gameplay. In the case of the “WAIT” action beyond this

point the agent fails to gather high rewards as the As-I action was never selected.

By the virtue of this design feature, the RL agent has implicitly learned the notion

of playing the game at a high pace.

Note also that the RL agent has not learned to always commit at a later time

than the baseline. Table 5.4 shows the percentage of times (in the test games)

where the RL policy chooses a different strategy than the baseline. We can see that

the RL policy commits at the same time instances as the baseline about 48% of

time. 44.77% of the time the baseline commits to the TI faster and about 7% of

the time the RL decides to commit earlier to the TI compared to the baseline.

The cases shown in Figure 5.2 provide examples of how the RL policy can

outperform the baseline in this offline study.

i) As the RL agent has learned to not commit to a decision early it can wait

enough time to observe more user words and thus reach higher confidence (Case 1).

ii) The RL agent is not keen on committing when it sees an early high confidence

value (like IT for the baseline) but rather waits which may enable the ASR partials

to become more stable (Case 2).

iii) The RL agent also learns to commit at low confidence values as the time

consumed increases and sometimes even committing earlier than the baseline

(Case 3).
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% times Same commit times 48.06
% times Baseline has faster commit 44.77
% times RL has faster commit 7.17

Table 5.4: Comparison of commit strategies between baseline and RL (%).

5.5.1 Contrasting Baseline and RL Policy Building Efforts

Building an SDS with carefully crafted rules has often been criticized as a

laborious and time consuming exercise. This is in contrast to the alternative data

oriented approaches, which are often argued to require less time to engineer a solu-

tion and be more scalable. Development of the baseline system’s policy component

took an NLP researcher approximately two months, including experimentation

with alternative rule structures and development of the parameter optimization

framework. The same amount of effort was put into developing the RL policy by a

researcher with similar skills. Building the RL policy involved experimenting with

various reward functions to suit the task. Though the reward function is simplistic

in our case, a high negative reward for wrong As-I actions was required for RL to

learn useful policies. It also takes effort and experimentation to select the right

algorithm (LSPI with value function approximation vs. Vanilla Q-learning). It is

thus hard to claim which approach is more time-efficient (in terms of development

effort). Figure 5.7 shows a comparison of the baseline policy and the RL policy

learned with the Vanilla Q-learning algorithm which did not perform well. It

performed worse than the baseline. We also need to keep in mind that: i) We

cannot claim that the rules learned by the RL policy could not be implemented

in the hand-crafted system. Bounds on the time and confidence (for example: do

not commit as soon as the confidence exceeds a threshold but rather wait for a few

additional time steps, it is okay to commit at lower confidence values for higher

time values to perform better, etc.) can be included in the Algorithm 1 and the
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system can be deployed with ease. ii) It usually takes time and effort to build

a common infrastructure to experiment between the two strategies. In this case,

experimenting with the incremental RL policy was simpler as the infrastructure

and the methodology existed from the previous work discussed in Chapter 3 and

Chapter 4. Despite the fact that both approaches required similar development

effort, in the end, RL did learn a better strategy automatically, at least in our

offline simulations (based on real user data). RL provides advantages compared to

the baseline method. Adding new constraints into the baseline can be hard. This

is because the baseline method uses exhaustive grid search to set its parameter

values, and it might be exponentially costly to do this with more constraints. On

the other hand, RL is more scalable as adding features is relatively easy with RL.

Until now, we have showed that RL has potential for learning policies to make

incremental decisions that yield better results than a high performance CDR

baseline. Our experiments were performed in simulation (albeit using real user

data) and the next step is to investigate whether these improvements transfer

to real time experiments (real time interaction of the agent with human users).

Another interesting avenue for future work is to implement a hybrid approach of

engineering a hand-crafted policy using the intuitions learned from using RL. There

are still regions of the state space that were not fully explored by RL. On the other

hand, as we saw, RL can potentially learn interesting policies which would not

have been intuitive for a dialogue designer to come up with. Therefore, we plan

to explore incorporating intuitions from the RL into the high performance CDR

baseline and see which avenue would be more fruitful and if we can get the best of

both worlds.
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Figure 5.7: Policy learned by the Vanilla Q-learning algorithm (blue) compared to
the baseline (red).
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ASR partials 

Figure 5.8: Actions taken by the baseline and the RL agent for the 1-best ASR
increments. The image set is also shown.

110



5.6 Live Human Interaction Study

The policy automatically learned by the RL approach outperforms the baseline

measured as points/second in the offline evaluation. It is important to verify the

performance of such an RL policy in live interaction with humans (not just offline

simulations based on real user data). In this section, I will discuss building such an

agent and measuring the performance of the agent in a real user live interaction

study, and compare the results with the strong baseline policy.

5.6.1 Agent Design

The agent architecture introduced in Section 3.6 is adopted to run the modified

RL-based Eve. The agent ASR was replaced with Google ASR6 service7. The

development of the NLU and the RL policy used for the study was described

earlier in the chapter (Section 5.3). No major differences were observed in the NLU

confidence scores between the ASR transcripts from Kaldi and the Google ASR8.

The baseline’s dialogue policy, using the eavesdropper framework, was retrained

using the same NLU results as the RL approach. The dialogue policy learned using

RL was logged as a stream (file) and loaded by the agent during deployment. The

agent utilizes the same utterances as the agent used for the baseline. Neospeech

TTS was used for converting text to speech.

6https://cloud.google.com/speech-to-text/
7It is important to note that swapping the ASR from Kaldi to Google did not yield any

significant differences in points per second results. However, the word error rate was found to be
lower.

8Although Google ASR yielded lower word error rates, the important keywords were identified
equally well by Kaldi and Google ASR. Hence, we did not observe any major differences in the
NLU scores.
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The agent was deployed as a web service and operated over the browser using a

unique HTTP URL. This deployment of the agent over the web allows conducting

the study using crowd-sourcing. I will now describe the study design.

5.6.2 Study Design

The participants for the study were recruited using Amazon Mechanical Turk

(AMT) following the study protocol described in Figure 3.13. The participants from

AMT were required to i) have a qualification acceptance rate of 92% or higher, ii) be

native English speakers, iii) be geographically located in the US or Canada, iv) have

high-speed internet, and v) use either a laptop or a PC (no mobile hand-held devices

were allowed). The participants self-qualified for the speed of the connection and

the device. The participants were then screened to ensure proper audio equipment

and setup. They were required to speak using their microphone and transcribe a

small portion of speech to ensure that their audio setup was proper. They were

then shown a video explaining the rules of the game. Before the actual game, the

participants played a practice round, and upon completion of the practice round,

they played the game by conversing with the agent. Upon completion of the game,

the participants were required to answer the questionnaire asking them to rate

their partner. The results are described below. We initially ran the study with

the CDR baseline (25 participants per different CDR version, see below), and then

deployed the RL agent (another 25 participants) and analyzed the differences.

5.6.3 Results

In this study, we compare the results obtained using the current experiment and

the previously recorded observations across the following conditions. i) noninc_pps:

condition with the agent running non-incrementally with the policy optimized
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inc_rl

inc_pps_new

inc_pps_old

medinc_pps

noninc_pps

Points

SCORES

noninc-pps medinc-pps inc_pps_old inc_pps_new inc_rl hh

noninc-pps

medinc-pps

inc_pps_old ** *

inc_pps_new ** *

inc_rl ** *

hh * *

Figure 5.9: Difference in points scored in different settings of the agent and the
human-human condition. (* p < 0.05, ** p < 0.01, *** p < 0.001)

on points per second as described in Chapter 4. The scores reported are for the

previously conducted experiments in Chapter 4. ii) medinc_pps: condition with

the agent running in the partially incremental mode with the policy optimized

on points per second as described in Chapter 4. The scores reported are for the
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previously conducted experiments in Chapter 4. iii) inc_pps_old: condition with

the agent running with a fully incremental model with the policy optimized on

points per second as described in Chapter 4. The scores reported are for the

previously conducted experiments in Chapter 4. iv) inc_pps_new: condition with

the agent running with a fully incremental model, with the new ASR and retrained

NLU model, and with the policy optimized on points per second. The scores

for this condition are obtained using the experiments run currently. v) inc_rl:

condition with the agent running with a fully incremental model and with the

policy optimized using RL (same ASR and NLU models as for the inc_pps_new

condition). The scores for this condition are obtained using the experiments run

currently. vi) hh: human-human conversation gameplay recorded earlier in a similar

setting. All the significance tests were conducted using the Wilcoxon rank-sum

test.

Quantitative comparison

Scores comparison. We measure the differences between the points scored

by the agents across different conditions and humans. We find that there are

no significant differences between the scores of the human-human condition and

the inc_pps_new and inc_rl conditions. However, the mean scores by the agent

in the RL condition are higher than the mean scores by the agent in the CDR

condition. Figure 5.9 shows the comparison of scores in different conditions and

the significance differences across different conditions.

Qualitative comparison

For measuring qualitative differences between the agents across different condi-

tions, we ask the users to respond to a 5-point Likert scale questionnaire. We ask
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It was easy to play the game with my 
partner.

It was easy to play the game with my partner.

noninc-pps medinc-pps inc_pps_old inc_pps_new inc_rl hh

noninc-pps

medinc-pps

inc_pps_old

inc_pps_new

inc_rl * * * *

hh ** ** ** ** *

Figure 5.10: Mean values of user responses and standard error bars for the question
‘It was easy to play the game with my partner’ as rated by the participants. Here
we see that users found it easy to play the game in the RL condition (significantly
higher ratings than the other agent conditions). Users found it easiest to play the
game with other humans. (* p < 0.05, ** p < 0.01, *** p < 0.001)

the users to rate if they ‘strongly disagree’, ‘disagree’, are ‘neutral’, ‘agree’, and

‘strongly agree’ to the statements.
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I liked working with my partner.
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inc_rl ** ** ** **

hh *** *** *** *** *

Figure 5.11: Mean values of user responses and standard error bars for the question
‘I liked working with my partner’ as rated by the participants. Here we find
that users rated the RL condition higher compared to the other agent conditions.
Humans still outperform all the agent conditions. (* p < 0.05, ** p < 0.01, ***
p < 0.001)

Easy to play. For this measure, we ask how easy they felt playing the game

with their partner. The question is purposefully kept general to measure the relative
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My partner played the game efficiently.
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inc_pps_old ** **

inc_pps_new ** **

inc_rl *** *** * *

hh *** *** * *

Figure 5.12: Mean values of user responses and standard error bars for the question
‘My partner played the game efficiently’ as rated by the participants. Here we
find that users felt that the humans played the game significantly more efficiently
than the agents. We also find that users felt that the RL agent played the game
more efficiently than the other versions of the agent. Also, there is no significant
difference between the RL agent and the human condition. (* p < 0.05, ** p < 0.01,
*** p < 0.001)
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I talked to my partner in the way I normally talk to another person.
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inc_rl *** *

hh *** *** *** *** **

Figure 5.13: Mean values of user responses and standard error bars for the question
‘I talked to my partner in the way I normally talk to another person’ as rated by the
participants. We find that users rated that they spoke normally to other humans
the most. There are no significant differences between the RL agent and the other
fully incremental agents. (* p < 0.05, ** p < 0.01, *** p < 0.001)

ease of playing the game with their partner. The users found it the easiest to play

the game with humans. Also, the users found it relatively easier to play the game
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Figure 5.14: Mean values of user responses and standard error bars for the question
‘I felt confident that my partner and I understood each other correctly’ as rated
by the participants. We find that users rated humans most favorably on this
metric. There are no significant differences between the RL agent and the other
fully incremental agents. (* p < 0.05, ** p < 0.01, *** p < 0.001)

with the RL version compared to the other versions of the agent (and this result is

statistically significant). The results are shown in Figure 5.10.

Liked working with partner. For this measure, we ask users to rate how

much they liked working with their partner during the game. This measure is

created with the intention of measuring their overall like-ness of working with their
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Figure 5.15: Mean values of user responses and standard error bars for the question
‘In the end I felt satisfied with our score’ as rated by the participants. There are
no significant differences between the RL agent and the other fully incremental
agents. Users were most satisfied with their scores when playing the game with
human partners. (* p < 0.05, ** p < 0.01, *** p < 0.001)

partner (Eve). We find that for this metric the users liked working with the humans
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the most. The RL condition is significantly better than the other agent conditions.

The results are shown in Figure 5.11.

Played game efficiently. For this measure, we ask users to rate their percep-

tion of efficient gameplay. For this metric the users rated the human condition as

more efficient. The RL agent was rated as a more efficient game-player than the

other versions of the agent (and this result is statistically significant). Also, there

was no significant difference between the RL condition and the human condition.

The results are shown in Figure 5.12.

In these three metrics, we find that the RL agent performs better than all the

previous versions of the agent. In the metrics mentioned below, we find that the

RL has done as well as the other fully incremental versions of the agent, and better

than the partially incremental and non-incremental versions of the agent.

Spoke normally. For this measure, we find that the users felt that they

spoke naturally when conversing with other humans. We find no other significant

differences between the fully incremental agents (Figure 5.13). We also find similar

patterns in the score satisfaction question (Figure 5.15). Furthermore, we

find that the users felt that the agent understood them equally well across the

incremental conditions (Figure 5.14).

From these observations, we can conclude that the RL agent is perceived as

better by the users than the baseline agents in various metrics. We, however, did

not find any significant differences in the scores. However, the mean values of

the scores by the RL agent are higher. The lack of significance could be due to

a small number of users. For some of the ratings the RL agent was significantly

better than the fully incremental baselines, and in all cases the RL agent was

significantly better than the partially incremental and non-incremental baselines. It

is also interesting that in terms of perceived game efficiency there was no significant
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difference between the RL condition and the human condition. These experiments

show that RL can be used to streamline the development of an agent that has been

shown to perform nearly as well as humans. In the subsequent sections, we show

another advantage of utilizing RL for the development of incremental SDS, namely

transfer learning. This approach helps extend building a dialogue policy for unseen

images.

5.7 Transfer

The dialogue policy discussed in this chapter so far is specific to a given image

set. The question that arises is: When conversational data is not available for

a given image context set is it possible to leverage conversations from different

image sets to build an incremental dialogue policy? In this section, we explore the

development of a dialogue policy a) by leveraging an already learned policy from a

different image set, and b) by utilizing visual object annotations.

Visual object annotations. Visual object annotations refer to the natural

language descriptions of the objects present in the image. Figure 5.16 shows an

example image with bounding boxes and labels. Bounding boxes are assigned to

objects and labels correspond to each of the bounding boxes. Each such bounding

box contains a description of the object labeled. Such visual object annotations for

images can be obtained using visual object annotation algorithms (e.g., Kulkarni et

al. (2013)) or through crowd-sourcing paradigms (e.g., Lin et al. (2014); Krishna et al.

(2017)). In this work, we obtain visual object annotations through crowd-sourcing.

The images used in the RDG-Image dataset as described in the earlier sections

do not contain visual object annotations. These annotations for the images in the

16 context sets are obtained using crowd-sourcing. The images were posted on
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Figure 5.16: An example image with visual object annotations.

AMT and workers with a task qualification rate of >95% in a minimum of 100 tasks

and within US/Canada were recruited to perform the task. Each worker provided 5

visual object annotations and each image was presented to 5 workers. These labels

were then checked for accuracy by an expert. The images were annotated by the

workers without the reference of the complete context set, i.e., without the other

images that each image would appear with in each round of the game. Figure 5.18

shows examples of the object annotations obtained for the images in a context set.

In this section, I explore the following directions: i) Utilize the dialogue policy

learned for a different image set to bootstrap the development of a dialogue policy

for a new unseen image set with the goal of achieving better performance with

fewer data points. ii) When no dialogue data is available, is it possible to develop

an initial policy with a simulated Director which produces descriptions using visual

object annotations? We explore augmenting policy learning using this simulated

user (Director) based dialogue policy. iii) Compare with a policy learned without

any augmentation using a randomly initialized policy as a baseline.

5.7.1 Setup

There are 16 context sets in total, with each context set consisting of 8 images.

These 16 context sets are divided into two halves, the first half is used as a ‘seen’
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image set and the other half as an ‘unseen’ image set. The augmentation part of the

training process is performed using only the ‘seen’ part of the image sets. We split

the ‘unseen’ human-human dialogue data into a training set (approximately 80% of

the data) and a test set (20% of the data). The training set of the ‘unseen’ dataset

is used to retrain the transferred policy in batches and we test the performance

using the test set of the ‘unseen’ dataset.

The three different conditions under which the dialogue policy is evaluated are:

i) Case 1 (NT): In this case, there is no transfer or any other kind of bootstrapping

of the learning process, which basically means that we start training on the train

portion of the ‘unseen’ dialogue data from scratch. This represents our baseline for

comparison. ii) Case 2 (T): In this case, we develop a simulated user which utilizes

visual object annotations for generating Director descriptions. These simulated

dialogues are first used to learn a policy and then we use this policy to bootstrap the

learning process for our ‘unseen’ image set. Thus in this case we do not use any real

dialogue data in the bootstrapping process, we just use visual object annotations.

iii) Case 3 (TEVE): In this case, we utilize an already learned policy (trained

on the ‘seen’ human-human dialogue data). We use this policy to bootstrap the

learning process for our ‘unseen’ image set. So basically the ‘seen’ human-human

dialogue data is only used in the TEVE case. We will now discuss these cases in

detail. The policies are learned using LSPI (Lagoudakis & Parr (2003)) and Vanilla

Q-learning (Sutton & Barto (1998)). The state and action representations are as

described in Section 5.3. For the ‘unseen’ image set all policies are trained on the

train portion of the ‘unseen’ human-human dialogues and tested on the test portion

of the ‘unseen’ human-human dialogues. But as we discussed above in Case 2 and

Case 3 the policy is bootstrapped whereas in Case 1 the policy is not bootstrapped

(i.e., the starting policy is random).
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1 2 3 4

5 6 7 8

Policy
Director: This is a pink 
drink with black straw 

User 1 (Target 2)

Policy +1Director: Green drink 
with lime and salt

User 2 (Target 5)

Policy +m
Director: Orange 
drink with grape on 
top

User m-1 (Target 8)

METHOD 3 [No transfer]

(Random initialization) 

Figure 5.17: The training methodology for Case 1.

Case 1 (NT)

In Case 1, we train the policy for a given image set utilizing the conversations

between the Director and the Matcher in the train portion of this image set (‘unseen’

human-human dialogue data). There is no transfer or any kind of bootstrapping of

the learning process. Figure 5.17 shows the method followed to train the policy

in this case. This is the base case scenario where we train the dialogue policy

utilizing the conversations between the human Director and the human Matcher

incrementally in batches. In this case, we use the descriptions from the human

Director describing the target image to train the policy.

Case 2 (T)

In recent times visual image object annotation datasets such as ImageNet (Deng

et al. (2009)), MS COCO (Lin et al. (2014)), and VisualGenome (Krishna et al.

(2017)) have proven to be extremely useful for computer vision tasks such as image
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classification, segmentation, vision understanding, and object identification. The

images in these datasets are annotated with the ground-truth labels of objects

and their relations. These object labels in the images can help with the task of

generating visual reference resolution descriptions as the Director typically acts.

These labels are utilized to build a simple simulated Director, which is then used to

train a Matcher policy. The simulated Director in this case uses the ground-truth

object labels and describes them in a sequence. Algorithm 2 shows the operation

of the simulated Director.

Algorithm 2 Simulated Director algorithm
Input: Object annotations A= {A0

0,A
0
1...A

8
n}, Target Image: t

Output: Target description Tt

1: Tt = {}
2: At = {At

0,A
t
1...A

t
k}

3: shuffle(At)
4: l = rand(1, |At|)
5: for At

i ∈ At do
6: if At

i not in A−At AND length(Tt)<= l then
7: Tt←{At

i}∪Tt

8: else
9: CONTINUE

10: end if
11: end for
12: if length(Tt) <l then
13: Tt← Tt∪{X ⊂ A−At : |X|= l}
14: end if
15: return Tt

Simulated Director. The simulated Director utilizes the visual image bounding

box object annotations to generate descriptions. The bounding box annotations for

the images do not exist for the images present in the RDG-Image dataset. These

bounding box annotations were collected using crowd-sourcing for the ‘seen’ and

‘unseen’ images in the dataset. These annotation labels for the images present
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in the RDG-Image were obtained by posting the images on AMT and asking

the users to perform the annotation and provide the descriptions. Figure 5.18

shows sample annotations for the images. The simulated Director in this work

generates the description for the image using these annotations (‘seen’ object

annotations). Algorithm 2 shows how this simulated Director operates. The

simulated Director is provided with the object annotations of 8 images in the

context set (A= {A0
0,A

0
1...A

8
n}) and the target image t. The output of this Director

is Tt which is a set of object annotations treated as the target image descriptions.

The maximum length of any target image description is determined by the length

(l), which is a random number generated within the range of 1 and the length of

target image descriptions. l is the number of unique annotations that can be a part

of Tt. l unique annotation labels for the target image (Tt) are generated from the

target image annotations (At) by random selection. If l unique annotation labels

are not present for the given image, the agent fetches annotation labels randomly

from the remaining labels for the given target image and appends them. Each call

to the simulated Director generates a new target description for the target image.

These simulated dialogues are used to train a policy using LSPI. LSPI uses the

state representation, actions, and reward function as described in Section 5.3. The

generated Q-values are now used to initialize the RL policy when training using the

human Director description dialogues in the train portion of the ‘unseen’ dialogues,

as in (Torrey & Shavlik (2010); Taylor & Stone (2009)).

Case 3 (TEVE)

In Case 3, we assume that prior conversations from a different set of images

have occurred and a policy has been learned. In this case, we utilize the policy

from a different image set (‘seen’ dialogues) to initialize the training process for

129



the ‘unseen’ image set. The generated Q-values are now used to initialize the

RL policy when training using the human Director description dialogues in the

train portion of the ‘unseen’ dialogues, as shown in Figure 5.19. The challenge, in

this case, is to choose the right Q-values to initialize the policy. In this case, the

assumption is that the policy for the image sets that have similar difficulty will be

similar and hence transferring the Q-values from an image set of similar difficulty

will help train a policy faster. The challenge is, however, selecting the right target

image set from which the policy can be transferred. We use image similarity as a

proxy for difficulty. This is intuitive as the images that have high similarity tend

to be the image sets with higher difficulty. To calculate image similarity, we feed

the images through a convolution neural network (Szegedy et al. (2015)) trained

using ImageNet (Deng et al. (2009)) and get the penultimate layer weights. These

weights form the vector representation for each image in the context set. We find

the average Euclidean distance between these image vectors, which will yield a

single similarity score. We use this score to find the closest policy from the trained

policies and use these Q-values for initialization. We then train the initialized

policy using the dialogues from the human Directors.

5.7.2 Experiments

In this section, we will discuss our experiments using the three methods described

above. The focus of this experiment is to measure the policy performance differences

across conditions. It is, however, important to note that the policy requires input

(P ∗
t ) from the NLU. In order to compare the different dialogue policies fairly, the

NLU has to remain the same across the three conditions. Hence, the NLU is trained

using the data from the training set (comprised of bounding box annotations)

before starting the policy training. For training the policy, we use LSPI with value
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Figure 5.20: Scores for different transfer conditions.

function approximation using the same features as we used to train the RL policy

described in Section 5.3. We test the policy decisions using the held out test set

after training the policy in Cases 1, 2, and 3 for every 50 target descriptions. The

policies for Cases 1, 2, and 3 are tested beginning at point 0. This initial point

for Case 1 is the randomly initialized Q-values. For Case 2, it is the Q-values

learned from simulated Director descriptions, and for Case 3, it is the policy from

a different context set (different image set with Director descriptions from real

dialogue data). We now begin training the dialogue policy by introducing the

training conversations. We train all the policies with different initialization, train

with the same amount of data, and analyze their differences in performance using

the same test set. For training the policy we explore Vanilla Q-learning (Sutton

& Barto (1998)) and LSPI (Lagoudakis & Parr (2003)). The state representation,

actions, and rewards are the same as those in Section 5.3.
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Figure 5.21: F-scores for different transfer conditions.

5.7.3 Results

In this section I will discuss the results obtained from the experiments. The

results are reported across the 6 conditions mentioned below.

• NT-Q: This is Case 1 (no transfer) run with Vanilla Q-learning as the learning

algorithm.

• NT: This is Case 1 (no transfer) run with LSPI as the learning algorithm.

• T-Q: This is Case 2 (transfer using the simulated Director) run with Vanilla

Q-learning as the learning algorithm.

• T: This is Case 2 (transfer using the simulated Director) run with LSPI as

the learning algorithm.
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• TEVE-Q: This is Case 3 (transfer using the policy learned with dialogue

data from another image set) run with Vanilla Q-learning as the learning

algorithm.

• TEVE: This is Case 3 (transfer using the policy learned with dialogue data

from another image set) run with LSPI as the learning algorithm.

Metrics. The F-score in this case is a measure of how good the agent is while

taking the ‘select’ and ‘wait’ actions which are important for the agent’s performance

in gameplay. The agent is said to make the correct ‘wait’ decision if the selection

from the NLU is incorrect. The agent’s ‘select’ decision is considered right if the

NLU output is the correct target image.

Humans do not make a ‘skip’ decision in the game. However, the decision to

‘skip’ is made by the agent to increase efficiency in gameplay. The agent in the

case of ‘skip’ is neither penalized nor awarded points towards the calculation of the

F-score. The score is calculated using the game logic when the agent makes the

selection.

Figure 5.20 shows the difference in performance across the 6 conditions. We see

that the agent learning the policy in the TEVE condition performs the best. The

agent achieves better initial performance with 0 training data specific to the target

image set. The agent also achieves superior performance upon training on the

complete image set. The TEVE-Q condition achieves a better initial performance

but soon loses its performance gains. This is because Vanilla Q-learning does not

use any kind of function approximation which is required when the data is sparse as

is our case. At the end of the 350 training dialogues, we observe that the conditions

trained using LSPI are better than those trained using Vanilla Q-learning. We also
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observe that the T and NT conditions reach a performance almost similar to that

of the TEVE condition upon training with all of the 350 dialogues.

Figure 5.21 shows the differences in F-scores measured across different condi-

tions. We find a similar pattern, that the TEVE condition achieves better initial

performance, and the performance gains taper upon seeing additional data. The

gains in performance in the Vanilla Q-learning conditions are much lower than the

gains that we see in the conditions trained using LSPI.

5.7.4 Discussions

From the results we can observe that: i) Using a policy pre-trained with real

dialogue data (TEVE) achieves a much better performance. ii) When no real

dialogue data is available for pre-training, using a simulated Director (T) achieves

a better performance than a policy that is randomly initialized (NT). iii) LSPI

with value function approximation yields higher scores than Vanilla Q-learning.

Using real user dialogues from a different image set (TEVE) performs better

than the T and NT conditions. The policy decisions from a different image set are

common across multiple image sets for a few state space features. For instance,

with very low confidence values (e.g., ∼ 0.0) and when the time consumed is low

(e.g., < 2s) the decision to ‘wait’ is common across multiple image sets. Similarly,

when the confidence value is very high (∼ 1.0) the decision to say ‘got it’ is common

across multiple image sets. Utilizing such common policy decisions across multiple

image sets by initializing the Q-values yields better performance compared to the

random initialization approaches that choose one of the actions randomly. Similarly,

the decisions to ‘skip’ are also learned from other image sets (e.g., low confidence

values at high time values). When a new image set is encountered, the RL can be

optimized on a few of the state space values (confidence and time) without the
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need to relearn actions for all the state space values. This gain in performance can

be achieved by utilizing the transfer approach.

The simulated conversations (T conditions) were designed to also help learn

such patterns. However, the gain in performance is lower than in the TEVE

condition. The visual object annotations are not sufficient to generate descriptions

similar to humans. The visual object annotations are generated per image without

the reference context set. The humans do not construct the target image (TI)

descriptions in the same way as the visual object annotations (e.g., ‘it has a

black straw’ [human TI description] vs. ‘black straw is in the drink’ [visual object

annotation]). But the visual object annotations can yield descriptions that can still

be used to initialize the Q-values. This results in a performance lower than the

TEVE condition but better than the baseline NT condition.

5.8 Contributions

In this chapter, we utilized the RL framework to build an incremental dialogue

policy for the RDG-Image game. We showed that in comparison with a strong

human-level performing baseline, the RL approach performs better. The RL

approach outperforms the strong baseline policy in an offline setting, and in a

live human interaction study it achieves a better qualitative performance. This

is one of the few studies in the literature that uses RL for incremental dialogue

policy learning. Our work is also one of the rare studies in the literature where

the RL policy is compared with a strong baseline, and not just a baseline that

was specifically built for comparing with the RL policy. Another benefit of the

RL approach is that it can be used in a transfer learning setting. We demonstrate

that using a transfer learning approach, where the transferred Q-values are learned
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from a similar domain, helps learn a better dialogue policy with fewer data samples.

This approach is beneficial when real conversational data is not available or limited.

This is the first time in the literature that transfer learning is applied to incremental

dialogue policy learning. Part of the work presented in this chapter has been

published in Manuvinakurike et al. (2017).

In the next chapter, I will focus on the NLU module and discuss methods to

extend the work with sophisticated semantic capabilities.
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Chapter 6

Incremental Dialogue Act

Recognition

“Action expresses priorities”

– Mahatma Gandhi, Lawyer, Politician, Activist, Writer

6.1 Introduction

One of the drawbacks of Eve is limited understanding and generation capabilities.

During conversation Eve assumes that every utterance from the user is a target

description. This limits Eve’s capability to understand rich and diverse human

utterances. The key to generating a diverse set of responses is to understand the

diverse speech acts used by the users while conversing. For instance, to respond to a

question with an answer, it is important to identify that a question has been asked.

In this chapter, we will develop methods that enable SDS with such capabilities.

We will motivate an annotation scheme for the tasks tackled in this work consisting

of dialogue acts. We will then design a task for incremental recognition of these

dialogue acts. The focus of this chapter will be to enhance the semantic processing

capabilities in incremental SDS. The focus will be mainly on understanding as in

the previous chapters.
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6.2 Related Work

In this chapter, one of the factors we are concerned with is the alignment between

dialogue acts (DAs) and individual words as they are spoken within Inter-Pausal

Units (IPUs) (Koiso et al. (1998)) or speech segments1. A range of prior research

has addressed several issues that arise in connection with the alignment of DAs

and IPUs. Some researchers have focused on the problem of DA-internal pauses,

developing classification approaches to decide whether consecutive segments of

speech separated by a pause should be concatenated for interpretation (Komatani

et al. (2015); Bell et al. (2001)). Other researchers have focused on determining, as

quickly as possible, whether a pause in user speech represents an end-of-utterance

(Ferrer et al. (2003); Raux & Eskenazi (2008); Atterer et al. (2008)). The detection

of an end-of-utterance is closely related to system turn-taking decisions, and the

optimization of a system’s turn-taking policy during a user pause has also been

explored, often with classification approaches (Sato et al. (2002); Takeuchi et al.

(2004); Raux & Eskenazi (2008)). Beyond the work on this alignment problem, a

related line of work has looked specifically at DA segmentation and classification

given an input string of words together with an audio recording to enable prosodic

and timing analysis (Petukhova & Bunt (2014); Zimmermann (2009); Zimmermann

et al. (2006); Lendvai & Geertzen (2007); Ang et al. (2005); Nakano et al. (1999);

Warnke et al. (1997)).

This work generally encompasses the problems of identifying DA-internal pauses

as well as locating DA boundaries within speech segments. Prosody information

has been shown to be helpful for accurate DA segmentation (Laskowski & Shriberg

(2010); Shriberg et al. (2000); Warnke et al. (1997)) as well as for DA classification

1We use the two terms interchangeably in this chapter to refer to a period of continuous
speech separated by pauses of a minimum duration before and after.
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(Stolcke et al. (2000); Fernandez & Picard (2002)). In general, DA segmentation

has been found to benefit from a range of additional features such as pause duration

at word boundaries, the user’s dialogue tempo (Komatani et al. (2015)), as well as

lexical, syntactic, and semantic features. Work on system turn-taking decisions has

used similar features to optimize a system’s turn-taking policy during a user pause,

often with classification approaches; e.g., (Sato et al. (2002); Takeuchi et al. (2004);

Raux & Eskenazi (2008)). For DA segmentation and classification, researchers have

explored both sequential models as well as joint models that optimize both decisions

together. Recent joint models include Petukhova & Bunt (2014), Morbini & Sagae

(2011), and Zimmermann (2009). In this work, we extract lexical and prosodic

features from a stream of user speech which has either been human-transcribed

or is being automatically transcribed by ASR. We then use a sequential model

that automatically segments DAs with a CRF before classifying them with a

SVM. The model runs incrementally after each new word. The two closest points

of contact are Zimmermann (2009), which uses a CRF to jointly segment and

classify DAs, and Petukhova & Bunt (2014), which uses a BayesNet or RIPPER

to incrementally segment and classify DAs in 10 dimensions simultaneously with

the DIT++ tagging scheme. In comparison with some related work, we are less

focused on rapid identification of end-of-utterance or “end-of-DA”. We rerun our

segmentation and classification algorithm after every recognized word, and thus

can recognize boundaries at the end of speech segments, but in this work we do

not put a heightened emphasis on low-latency detection of such boundaries. To

our knowledge, very little research has looked in detail at the impact of adding

incremental DA segmentation to an implemented incremental system (though see

Nakano et al. (1999)).
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Figure 6.1: An example RDG-Image dialogue, where the Director (D) tries to
identify the target image, highlighted in red, to the Matcher (M). The DAs of the
Director (D DA) and Matcher (M DA) are indicated.

6.3 RDG-Image

6.3.1 Corpus & Annotations

For the previously collected data sets of human-human gameplay in RDG-Image

both in a lab setting (Paetzel et al. (2014)) and in an online, web-based version of the

game (Manuvinakurike & DeVault (2015); Paetzel et al. (2015)) we annotated the

data. To support the experiments, a single annotator segmented and annotated the

main game rounds from our lab-based RDG-Image corpus with a set of DA tags.2

The corpus includes gameplay between 64 participants (32 pairs, age: M = 35,

SD = 12, gender: 55% female). 11% of all participants reported they frequently

played similar games before; the other 89% had no or very rare experience with

similar games. All speech was previously recorded, manually segmented into speech

segments (IPUs) at pauses of 300ms or greater, and manually transcribed. The new

DA segmentation and annotation steps were carried out at the same time by adding

2We excluded from annotation the training rounds in the corpus, where players practiced
playing the game.
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Example # IPUs # DAs Annotation
1 1 5 PFB that’s okay ‖ D-T um this castle has a ‖ ST oh gosh this is hard ‖

D-T this castle is tan ‖ D-T it’s at a diagonal with a blue sky
2 1 2 D-T and it’s got lemon in it ‖ Q-YN you got it
3 1 2 PFB okay ‖ D-T this is the christmas tree in front of a fireplace
4 1 2 EC fireplace ‖ As-I got it
5 2 2 D-M all right ‖ D-T this is ... this is this is the brown circle and it’s not

hollow
6 3 1 D-T this is a um ... tan or light brown ... box that is clear in the middle
7 3 2 D-M all right ‖ D-T he’s got he’s got that ... that ... first uh the first finger

and the thumb pointing up
8 3 2 ST um golly ‖ DT this looks like a a a ... ginseng ... uh of some sort
9 2 4 ST oh wow ‖ D-M okay ‖ D-T this one ... looks it has gray ‖ D-T a lotta

gray on this robot

Table 6.1: Examples of annotated DA types, DA boundaries (‖), and IPU bound-
aries (...). The number of IPUs and DAs in each example are indicated.

boundaries and DA labels to the transcribed speech segments from the game. The

annotator used both audio and video recordings to assist with the annotation task.

The annotations were performed on transcripts which were seen as segmented into

IPUs.

Table 6.1 provides several examples of this annotation. We designed the set of

DA labels to include a range of communicative functions we observed in human-

human gameplay, and to encode distinctions we expected to prove useful in an

automated agent for RDG-Image. Our DA label set includes Positive Feedback

(PFB), Describe Target (D-T), Self-Talk (ST), Yes-No Question (Q-YN), Echo

Confirmation (EC), Assert Identified (As-I), and Assert Skip (As-S). We also include

a filled-pause DA (P) used for ‘uh’ or ‘um’ separated from other speech by a pause.

The complete list of 18 DA labels and their distribution are included in Tables 6.4

and 6.5. To assess the reliability of annotation, two annotators annotated one game

(2 players, 372 speech segments); we measured kappa for the presence of boundary

markers (‖) at 0.92 and word-level kappa for DA labels at 0.83.
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Describe Target (D-T) is concerned with the description of the target image.

(D-T) covers 61.7% of the total utterances by the Director. Echo Confirmation

(EC) corresponds to the confirmation of the partner’s query by repeating the same

phrase. Positive Feedback (PFB) is the partner providing positive feedback to

the user’s queries typically. Action Directive (A-D) corresponds to the players

asking their partner to perform certain game actions such as clicking the image.

Q-YN is a simple yes-no question which demands a yes-no answer from the partner.

AY and AN are the yes and no answers to Q-YN. Clarification Question (Q-

C) is a question seeking clarification about the description of the image. Discourse

Markers (D-M) are DAs which indicate to the partner that the player is about to

say something. (Q-Wh) are wh-questions posed by either of the players. Q-D are

disjunctive questions. Filled pauses (P) and hedges (H) are annotated as well.

The Assert Identified (As-I) dialogue act corresponds to the Matcher action

typically signalling that the player has identified the image that was described by

their partner. Matcher Assertions (As-M) are Matcher assertions made for

courtesy purposes. Assert Skip (As-S) are the assertions made by the Matcher

asking the Director to move on to the next target image. ST corresponds to self

talk statements which are usually the murmurs or statements that did not receive

response from the partner. Transcribed utterances that correspond to conversations

outside the gameplay are tagged G.

Summary statistics for the annotated corpus are as follows. The corpus contains

64 participants (32 pairs), 1,906 target images, 8,792 speech segments, 67,125 word

tokens, 12,241 DA segments, and 4.27 hours of audio. The mean number of DAs per

speech segment is 1.39. In Table 6.3, we summarize the distribution in number of

DAs initiated per speech segment. 23% of speech segments contain the beginning of

at least two DAs; this highlights the importance of being able to find the boundaries
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Total participants 64 (32 pairs)
Total target images 1,906
Total speech segments 8,792
Total word tokens 67,125
Total DA segments 12,241
Total duration of audio 4.27 hours

Table 6.2: Summary statistics for the DA-annotated RDG-Image corpus.

Number of DAs 0 1 2 ≥ 3
% of speech seg-
ments

3 74 18 5

Table 6.3: The distribution in the number of DAs whose first word is within a
speech segment.

between multiple DAs inside a speech segment. Most DAs begin at the start of

a speech segment (i.e.. immediately after a pause), but 29% of DAs begin at the

second word or later in a speech segment. 4% of DAs contain an internal pause

and thus span multiple speech segments.

6.4 Segmentation and Dialogue Act Recognition

In this section, we present a case study of implementing an incremental DA

segmentation capability for the RDG-Image game illustrated in Figure 6.1. As we

discussed in previous chapters, in this game two players converse freely in order to

identify a specific target image on the screen (outlined in red). When played by

human players, as in Figure 6.1, the game creates a variety of fast-paced interaction

patterns, such as question-answer exchanges. Our motivation is to eventually enable

a future version of our automated RDG-Image agent (Paetzel et al. (2015)) to

participate in the most common interaction patterns in human-human gameplay.
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For example, in Figure 6.1, two fast-paced question-answer exchanges arise as

the director D is describing the target image. In the first, the Matcher M asks

brown...brown seat? and receives an almost immediate answer brown seat yup. A

moment later, the Director continues the description with and handles got it?, both

adding and handles and also asking got it? without an intervening pause. We

believe that an important step toward automating such fast-paced exchanges is to

create an ability for an automated agent to incrementally recognize the various

DAs, such as yes-no questions (Q-YN), target descriptions (D-T), and yes answers

(A-Y) in real-time as they are happening.

In this chapter, first, we define a sequential approach to incremental DA segmen-

tation and classification that is straightforward to implement and which achieves a

useful level of performance when trained on a small annotated corpus of domain-

specific DAs. Second, we explore the performance of our approach using both

existing and new performance metrics for DA segmentation. Our new metrics

emphasize the importance of precision and recall of specific DA types, indepen-

dently of DA boundaries. These metrics are useful for evaluating DA segmenters

that operate on noisy ASR output and which are intended for use in systems whose

dialogue policies are defined in terms of the presence or absence of specific DA types,

independently of their position in user speech. This is a broad class of systems.

Third, while much of the prior work on DA segmentation has been corpus-based,

we report here on an initial integration of our incremental DA segmenter into

an implemented, high-performance agent for the RDG-Image game. Our case

study suggests that incremental DA segmentation can be performed with sufficient

accuracy for us to begin to extend our baseline agent’s conversational abilities

without significantly degrading its current performance in the game.
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DA Description Example
D-T Describe target this is the christmas tree in front of a fireplace
As-I Assert Identified got it
NG Non-game utterances okay there i saw the light go on
PFB Positive feedback okay
ST Self-talk statements ooh this is gonna be tricky
P Filled pause uh
D-M Discourse marker alright
Q-YN Yes-No question is it on something white
A-Y Yes answer yeah
EC Echo confirmation the blue
As-M Matcher assertions it didn’t let me do it
Q-C Clarification question bright orange eyes?
A-D Action directive oh oh wait hold on
A-N No answer no, nah
H Hedge i don’t know what it is
Q-D Disjunctive question are we talking dark brown or like caramel

brown
Q-Wh Wh-question what color’s the kitty
As-S Assert skip i’m gonna pass on that

Table 6.4: The complete list of DAs in the annotated RDG-Image corpus.

DA All Dir Mat DA All Dir Mat
D-T 41 60 0 EC 2 .5 6
As-I 15 0 46 As-M 2 0 4
NG 11 9 11 Q-C 2 .5 4
PFB 8 10 7 A-D 1 .3 2
ST 4 4 4 A-N .5 .7 .2
P 4 6 2 H .5 .7 0
D-M 3 5 .2 Q-Wh .3 0 .5
Q-YN 3 .6 7 As-S .1 0 .1
A-Y 2 3 1 Q-D .4 0 1.2

Table 6.5: DA distribution. We report the relative percentages for each DA out of
all DAs, Director DAs, and Matcher DAs, respectively.
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Figure 6.2: The operation of the pipeline on selected ASR partials (with time index
in seconds).

6.5 Technical Approach

The goal for our incremental DA segmentation component is to segment the

recognized speech for a speaker into individual DA segments and to assign these

segments to the 18 DA classes in Table 6.4. We aim to do this in an incremental

(word-by-word) manner, so that information about the DAs within a speech segment

becomes available before the user stops or pauses their speech.

Figure 6.2 shows the incremental operation of our sequential pipeline for DA

segmentation and classification. We use Kaldi (Povey et al. (2011)) for ASR,
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and we adapt the work of (Plátek & Jurčíček (2014)) for incremental ASR. The

pipeline is invoked after each new partial ASR result becomes available (i.e., every

100ms), at which point all the recognized speech is resegmented and reclassified

in a restart incremental (Schlangen & Skantze (2011)) design. The input to the

pipeline includes all the recognized speech from one speaker (including multiple

IPUs) for one target image sub-dialogue.

In our sequential pipeline, the first step is to use sequential tagging with a

CRF (Conditional Random Field) (Lafferty et al. (2001)) implemented in Mallet

(McCallum (2002)) to perform the segmentation. The segmenter tags each word as

either the beginning (B) of a new DA segment or as a continuation of the current

DA segment (I).3 Then, each resulting DA segment is classified into one of 18 DA

labels using an SVM (Support Vector Machine) classifier implemented in Weka

(Hall et al. (2009)).4

6.5.1 Features

Prosodic features. We use word-level prosodic features similar in nature to

Litman et al. (2009). The alignment between words and computed prosodic features

is achieved using a forced aligner (Baumann & Schlangen (2012)) to generate word-

level timing information. For each word, we first obtain pitch and RMS values

every 10ms using InproTK (Baumann & Schlangen (2012)). Because pitch and

energy features can be highly variable across users, our pitch and energy features

are represented as z-scores that are normalized for the current user up to the current

3Note that our annotation scheme completely partitions our data, with every word belonging
to a segment and receiving a DA label. We have therefore elected not to adopt BIO (Begin-Inside-
Outside) tagging.

4This DA classification approach is similar to the incremental classification model of DeVault
et al. (2011b), but here using simple DA labels as output instead of complete semantic frames.
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word. For the pitch and RMS values, we obtain the max, min, mean, variance

and the co-efficients of a second degree polynomial. Pause durations at word

boundaries provide an additional useful feature (Kolář et al. (2006); Zimmermann

(2009)). All numeric features are discretized into bins. We currently use prosody

for segmentation but not classification.5

To avoid overfitting on the prosodic features we calculate the z value for each

of the prosodic (pitch and power) value. In an incremental scenario the estimated

values of the mean (µ) and standard deviation (σ) for the current user are re-

calculated after every word. The z-values are used as prosodic features instead of

raw features.

Z−value= x−µ
σ

Lexico-syntactic & contextual features. We use word unigrams along with

the corresponding part-of-speech (POS) tags, obtained using Stanford CORENLP

(Manning et al. (2014)), as a feature for both the segmentation and the DA classifier.

Words with a low frequency (<10) are substituted with a low frequency word symbol.

The top level constituent category from a syntactic parse of the DA segment is also

used.

Several contextual features are included. The role of the speaker (Director

or Matcher) is included as a feature. Previously recognized DA labels from each

speaker are included. Another feature is added to assist with the Echo Confirmation

(EC) DA, which applies when a speaker repeats verbatim a phrase recently spoken

by the other interlocutor. For this we use features to mark word-level unigrams

that appeared in recent speech from the other interlocutor. Finally, a categorical

5For the experiments reported in this chapter, prosodic features were calculated offline, but
they could in principle be calculated in real time.
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feature indicates which of 18 possible image sets (e.g., bikes as in Figure 6.1) is

under discussion; simpler images tend to have shorter segments.6

6.5.2 Discussion of Machine Learning Setup

A salient alternative to our sequential pipeline approach – also adopted for

example by Ang et al. (2005) – is to use a joint classification model to solve

the segmentation and classification problems simultaneously, potentially thereby

improving performance on both problems (Petukhova & Bunt (2014); Morbini &

Sagae (2011); Zimmermann (2009); Warnke et al. (1997)). We performed an initial

test using a joint model and found, unlike the finding reported by Zimmermann

(2009), that for our corpus a joint approach performed markedly worse than our

sequential pipeline.7 We speculate that this is due to the relative sparsity of data

on rarer DA types in our relatively small corpus. For similar reasons, we have not

yet tried to use RNN-based approaches such as LSTMs, which tend to require large

amounts of training data. We will adopt deep learning methods in later sections on

another dataset in a similar setting.

6.6 Experiment and Results

We report on two experiments. In the first experiment, we train our DA

segmentation pipeline using the annotated corpus of Section 6.3.1 and report

results on the observed DA segment boundaries (Section 6.6.1) and DA class labels

(Section 6.6.2). In the second experiment, presented in Section 6.6.3, we report on

6The image set feature affects the performace of the segmenter only slightly.
7We used a joint CRF model similar to the BI coding of Zimmermann (2009).
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Condition Transcripts (T) Segment Boundaries (S) DA labels (D)
HT-HS-HD Human Human Human
HT-HS-AD Human Human Automated
HT-AS-AD Human Automated Automated
AT-AS-AD ASR Automated Automated

Table 6.6: Conditions for evaluating DA segmentation and classification.

Condition # IPUs Example
HT-HS-HD 1 (a) A-N um no ‖ D-T it’s the blue frame ‖ D-T but it’s an orange seat and an orange handle
HT-HS-AD 1 (b) A-N um no ‖ D-T it’s the blue frame ‖ D-T but it’s an orange seat and an orange handle
HT-AS-AD 1 (c) P um ‖ A-N no ‖ D-T it’s the blue frame ‖ D-T but it’s an orange seat ‖ D-T and an orange handle
AT-AS-AD 1 (d) A-N on no ‖ D-T it’s the blue frame ‖ D-T but it’s an orange seat ‖ D-T and orange ‖ A-N no

Table 6.7: Examples of DA boundaries (‖) and DA labels in each condition.

a policy simulation that investigates the effect of our incremental DA segmentation

pipeline on a baseline automated agent’s performance.

For the first experiment, we use a hold-one-pair-out cross-validation setup where,

for each fold, the dialogue between one pair of players is held out for testing, while

automated models are trained on the other pairs.

To evaluate our pipeline, we use four data conditions, summarized in Table 6.6,

that represent increasing amounts of automation in the pipeline. These conditions

allow us to better understand the sources for observed errors in segment boundaries

and/or DA labels. Our notation for these conditions is a compact encoding of the

data sources used to create the transcripts of user speech, the segment boundaries,

and the DA labels. Our reference annotation, described in Section 6.3.1, is notated

HT-HS-HD (human transcript, human segment boundaries, human DA labels).

Example segmentations for each condition are in Table 6.7.

150



Condition Features Accuracy F-Score DSER
B tag I tag

1-DA-per-IPU 0.78 0.23 0.87 0.26
HT-AS-AD Prosody (I) 0.72 0.62 0.69 0.42
HT-AS-AD Lexico-Syntactic & Contextual (II) 0.90 0.82 0.82 0.31
HT-AS-AD I+II 0.91 0.83 0.84 0.30
Human annotator 0.95 0.91 0.94 0.15

Table 6.8: Observed DA segmentation performance. These results consider only
DA boundaries.

6.6.1 Evaluation of DA Segment Boundaries

In this evaluation, we ignore DA labels and look only at the identification of

DA boundaries (notated by ‖ in Table 6.7, and encoded using B and I tags in

our segmenter). For this evaluation, we use human transcripts and compare the

boundaries in our reference annotations (HT-HS-HD) to the boundaries inferred by

our automated pipeline (HT-AS-AD).8

In Table 6.8, we present results for versions of our pipeline that use three

different feature sets: only prosody features (I), only lexico-syntactic and contextual

features (II), and both (I+II). We include also a simple 1-DA-per-IPU baseline that

assumes each IPU is a single complete DA; it assigns the first word in each IPU a

B tag and subsequent words an I tag. Finally, we also include numbers based on an

independent human annotator using the subset of our annotated corpus that was

annotated by two human annotators. For this subset, we use our main annotator

as the reference standard and evaluate the other annotator as if their annotation

were a system’s hypothesis.9

8We evaluate our DA segmentation performance using human transcripts, rather than ASR,
as this allows a simple direct comparison of inferred DA boundaries.

9For comparison, the chance-corrected kappa value for word-level boundaries is 0.92; see
Section 6.3.1.
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Condition Metrics used for human tran-
scripts

Alignment-based
metrics

DER Strict Lenient Levenshtein-
Lenient

CER

HT-HS-AD 0.39 0.09 0.09 0.07 0.27
HT-AS-AD 0.72 0.38 0.15 0.12 0.39
AT-AS-AD 0.39 0.52

Table 6.9: Observed DA classification and joint segmentation+classification per-
formance.

The reported numbers include word-level accuracy of the B and I tags, F-score

for each of the B and I tags, and the DA segmentation error rate (DSER) metric of

Zimmermann et al. (2006). DSER measures the fraction of reference DAs whose

left and right boundaries are not exactly replicated in the hypothesis. For example,

in Table 6.7, the reference (a) contains three DAs, but only the boundaries of the

second DA (it’s the blue frame) are exactly replicated in hypothesis (c). This yields

a DSER of 2/3 for this example.

We find that our automated pipeline (HT-AS-AD) with all features performs

the best among the pipeline methods, with word-level accuracy of 0.91 and DSER

of 0.30. Its performance however is worse than an independent human annotator,

with double the DSER. This suggests there remains room for improvement at

boundary identification. The 1-DA-per-IPU baseline does well on the common case

of single-IPU DAs, but it fails ever to segment an IPU into multiple DAs. We use

the pipeline with all features in the following sections.

6.6.2 Evaluation of DA Class Labels

The accuracies are calculated based on the correct dialogue act assigned to each

of the token.

Acc= num of tokens with correct class labels
tokens
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In this evaluation, we consider DA labels assigned to recognized DA segments

using several types of metrics. We summarize our results in Table 6.9.

Metrics used for human transcripts. We first compare our reference anno-

tations (HT-HS-HD) to the performance of our automated pipeline when provided

with human transcripts as input. For this comparison, we use three error rate

metrics (Lenient, Strict, and DER) from the DA segmentation literature that are

intuitively applied when the token sequence being segmented and labeled is identical

(or at least isomorphic) to the annotated token sequence. Lower is better for these.

The Lenient and Strict metrics (Ang et al. (2005)) are based on the DA labels

assigned to each individual word (by way of the label of the DA segment that

contains that word). Lenient is a per-token DA label error rate that ignores DA

segment boundaries.10 In Table 6.9, this error rate is 0.09 when human-annotated

boundaries are fed into our DA classifier (HT-HS-AD) and 0.15 when automatically-

identified boundaries are used (HT-AS-AD). This shows that incorrect automatic

segmentation of human transcripts causes about 6% of words (0.15-0.09) to receive

the wrong DA label.

Strict and DER are boundary-sensitive metrics. Strict is a per-token error rate

that requires each token to receive the correct DA label and also to be part of a

DA segment whose exact boundaries appear in the reference annotation. This is a

much higher standard.11 Our pipeline (HT-AS-AD) achieves a Strict error rate of

0.38. Dialogue Act Error Rate (DER) (Zimmermann et al. (2006)) is the fraction

of reference DAs whose left and right boundaries and label are perfectly replicated

in the hypothesis. While the reported boundary-sensitive error rate numbers (0.39

10E.g., in Table 6.7 (c), the only Lenient error is at word um.
11E.g., in Table 6.7 (c), only the four words it’s the blue frame would count as non-errors on

the Strict standard.
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and 0.72) may appear to be high, many of these boundary errors may be relatively

innocuous from a system standpoint.

Alignment-based metrics. We also report two additional metrics that are

intuitively applied even when the word sequence being segmented and classified is

only a noisy approximation to the word sequence that was annotated, i.e., under an

ASR condition such as AT-AS-AD. The Concept Error Rate (CER) is a word error

rate (WER) calculation (Chotimongkol & Rudnicky (2001)) based on a minimum

edit distance alignment of the DA tags (using one DA tag per DA segment). Our

fully automated pipeline (AT-AS-AD) has a CER of 0.52.

We also report an analogous word-level metric which we call ‘Levenshtein-

Lenient’. To our knowledge this metric has not previously been used in the

literature. It replaces each word in the reference and hypothesis with the DA

tag that applies to it, and then computes a WER on the DA tag sequence. It is

thus a Lenient-like metric that can be applied to DA segmentation based on ASR

results. Our automated pipeline (AT-AS-AD) scores 0.39, indicating considerable

differences in the hypothesized sequences of word-level DA tags.

DA multiset precision and recall metrics. When ASR is used, the CER

and Levenshtein-Lenient metrics give an indication of how well you are doing at

replicating the ordered sequence of DA tags. But in building a system, sometimes

the sequence is less of a concern, and what is desired is a breakdown in terms of

precision and recall per DA tag. One way to achieve this is with a metric like the

“F measure” of Zimmermann (2009), which looks at the DAs that receive both

the correct boundaries and the correct label, and computes precision and recall.

However, for system building, getting the exact boundaries right may be less of a

concern, and may be too difficult a standard to meet when noisy automated ASR

transcription is involved. Many dialogue systems use policies that are triggered
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when a certain DA type has occurred in the user’s speech (such as an agent that

processes yes (A-Y) or no (A-N) answers differently, or a Director agent for the

RDG-Image game that moves on when the Matcher performs As-I (“got it”)). For

such systems, exact DA boundaries and even the order of DAs is not of paramount

importance so long as a correct DA label is produced around the time the user

performs the DA.

For example, to an agent like Eve, what is likely to matter most for certain DA

types is that there is high precision and recall for the occurrence of the DA. For

example, if the agent were in the Director role, it would need to be able to reliably

recognize the occurrence of As-I (“got it”) so that the dialogue or interaction

manager could then move onto the next object. The exact DA boundaries and even

the order of DA labels is likely not of paramount importance so long as the As-I

label is produced around the time the user performs this DA.

We therefore define a more permissive measure that looks only at precision

and recall of DA labels within a sample of user speech. As an example, in (a) in

Table 6.7, there is one A-N label and two D-T labels. In (d), there are two A-N

labels and 3 D-T labels. Ignoring boundaries, we can represent as a multiset the

collection of DA labels in a reference A or hypothesis H, and compute standard

multiset versions of precision and recall for each DA type.

We report these numbers for our most common DA types in Table 6.10. Here,

we continue to use the speech of one speaker during a target image subdialogue

as the unit of analysis. The data show that precision and recall generally decline

for all DA types as automation increases in the conditions from left to right. We

do relatively well with the most frequent DA types, which are D-T and As-I. A

particular challenge, even in human transcript+segment condition HT-HS-AD, is

the DA tag PFB. In a manual analysis of common error types, we found that the
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Condition HT-HS-AD HT-AS-AD AT-AS-AD
P R P R P R

D-T 0.98 0.98 0.85 0.95 0.79 0.88
As-I 0.97 0.97 0.74 0.96 0.73 0.68
NG 0.84 0.89 0.72 0.88 0.63 0.50
PFB 0.67 0.65 0.50 0.77 0.42 0.60
ST 0.92 0.92 0.71 0.63 0.41 0.31
Q-YN 0.94 0.85 0.86 0.85 0.55 0.52
AN 0.90 0.90 0.70 0.67 0.42 0.32
A-Y 0.79 0.79 0.65 0.75 0.59 0.58

Table 6.10: DA multiset precision and recall metrics for a sample of higher-frequency
DA tags.

different DA labels used for very short utterances like ‘okay’ (D-M, PFB, As-I) and

‘yeah’ (A-Y, PFB, As-I) are often confused. We believe this type of error could be

reduced through a combination of improved features, collapsed DA categories, and

more detailed annotation guidelines. ASR errors also often cause DA errors; see

e.g., Table 6.7 (d). The version of Kaldi ASR used in these experiments did not

incorporate the latest DNN acoustic models which have lowered word error rates

substantially; our automated pipeline’s results will likely improve by improving the

underlying ASR.

6.6.3 Evaluation of Simulated Agent Dialogues

Motivation. In this experiment, we perform an offline investigation into the

potential impact on our agent’s image-matching performance if we integrate the

incremental DA segmentation pipeline. We take the “fully-incremental” version of

Eve from (Paetzel et al. (2015)) as our baseline agent in this experiment, i.e., the

CDR version of Eve.
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The baseline agent’s design focuses on the most common DA types in our

RDG-Image corpora: D-T for the Director (constituting 60% of Director DAs),

and As-I for the Matcher (constituting 46% of Matcher DAs). Effectively, the

baseline agent assumes every word the user says is describing the target, and uses

an optimized policy to decide the right moment to commit to a selection (As-I) or

ask the user to skip the image (As-S). Eve’s typical interaction pattern is illustrated

in Figure 6.3.

This experiment is narrowly focused on the impact of using the pipeline to

segment out only the D-T DAs and to use only the words from detected D-Ts in

the target image classifier and the agent’s policy decisions. Changing the agent

pipeline from using the Director’s full utterance towards only taking the D-T

tagged words into account could potentially have a negative impact on the baseline

agent’s performance. For example, for the fully automated condition AT-AS-AD in

Table 6.10, D-T has precision 0.79 and recall 0.88. The 0.88 recall suggests that

some D-T words will be lost (in false negative D-Ts) by integrating the new DA

segmenter. Additionally, as shown in Figure 6.2, the recognized words and whether

they are tagged as D-T can change dynamically as new incremental ASR results

arrive, and this instability could undermine some of the advantage of segmentation.

On the other hand, by excluding non-D-T text from consideration, there is a

potential to decrease noise in the agent’s understanding and improve the agent’s

accuracy or speed.

While this design has enabled the agent to play the Matcher role with some

success (achieving approximately human-level game scores in terms of points/sec

(Paetzel et al. (2015))), it excludes a substantial range of natural conversational

patterns in the game. Indeed, taken together, D-T and As-I only represent 56% of

the overall DAs in our annotated corpus. (See Table 6.4 for the full distribution.)
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Figure 6.3: Eve (E) identifies a target image.

Figure 6.4: Our baseline Eve fails to recognize that the user is requesting more
time. Instead, Eve judges that she is failing to understand a description of the
target image, and suggests they skip it.

In the post-game survey, users rated baseline agent Eve as significantly less efficient

in its gameplay than human partners, and also felt significantly less able to talk to

our baseline agent “in the way I normally talk to another person”.

An example where Eve fails to respond like most human partners would is given

in Figure 6.4. We believe that by developing an incremental DA segmentation

component for the agent, and by enabling the agent to detect and respond to a

wider variety of DA types, we will eventually be able to increase its repertoire

of conversational interaction patterns and thereby improve user experience. In

Figure 6.1, the Director’s answer no (A-N) and continued description it’s green...

appear to be understood incrementally before the Matcher initiates yes I got it.

While we are motivated to enable such interactive capabilities, at the same time,

it is important that we not reduce the performance of the agent by introducing more
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complex and error-prone language processing modules. A further consideration is

that incremental operation is critical to the baseline agent’s current performance and

favorable user impressions. As the ASR partials can be unstable, the segmenter’s

and the DA classifier’s outputs are unstable as well. Figure 6.2 shows an example

of the evolving output from the pipeline. If the D-T vs. non-D-T determination is

highly unstable, it could undermine some of the advantages of the segmentation

capability.

The goals of including segmentation and labelling in the dialogue pipeline is to

improve the overall performance and acceptance of the agent by distinguishing the

DAs for the game partner and ultimately introducing a greater variety of responses.

However, this will only improve the overall experience with the agent if it does not

decrease the NLU accuracy and the interaction speed as both imply reduction in

the scores of the agent. The pipeline operating incrementally is critical for including

the system into a real time SDS.

Experiment. As an initial investigation into the issues described above, we

adopt the “eavesdropper” framework for policy simulation. In an eavesdropper

simulation, the Director’s speech from pre-recorded target image dialogues is

provided to the agent, and the agent simulates alternative policy decisions as if it

were in the Matcher role. We have found that higher cross-validation performance

in these offline simulations has translated to higher performance in live interactive

human-agent studies (Paetzel et al. (2015)).

We created a modified version of our agent that uses the fully automated

pipeline (AT-AS-AD) to pass only word sequences tagged as D-T to the agent’s

language understanding component (a target image classifier), effectively ignoring

other DA types. Tagging is performed every 100 ms on each new incremental

output segment published by the ASR. We then compare the performance of our
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baseline and modified agent in a cross-validation setup, using an eavesdropper

simulation to train and test the agents. We use a corpus of human-human gameplay

that includes 18 image sets and game data from both the lab-based corpus of 32

games described in Section 6.3.1 and also the web-based corpus of an additional 98

human-human RDG-Image games described in Manuvinakurike & DeVault (2015).

Each simulation yields a new trained NLU (target image classifier, based either on

all text or only on D-T text) and a new optimized policy for when the agent should

perform As-I vs. As-S. Within the simulations, for each target image, we compute

whether the agent would score a point and how long it would spend on each image.

image set total time(sec) total points p p/sec NLU accuracy avg sec/image
All DAs Pets 984.7 182 0.18 0.77 4.15

Zoo 921.1 203 0.22 0.79 3.60
Cocktails 1300.3 153 0.12 0.60 5.12
Bikes 1630.9 126 0.08 0.47 6.12

Only D-T Pets 992.0 184 0.19 0.78 4.19
Zoo 932.8 198 0.21 0.77 3.64

Cocktails 1326.7 155 0.12 0.61 5.22
Bikes 1678.4 130 0.08 0.49 6.29

Table 6.11: Overall performance of the eavesdropper simulation on the unsegmented
data (All DAs) and the automatically segmented data (Only D-T) identified with
our pipeline (AT-AS-AD).

Table 6.11 summarizes the observed performance in these simulations for four

sample image sets in the two agent conditions. All results are calculated based

on leave-one-user-out training and a policy optimized on points per second. A

Wilcoxon-Mann-Whitney Test on all 18 image sets indicated that, between the two

conditions, there is no significant difference in the total time (Z =−0.24, p= .822),

total points scored (Z =−0.06, p= .956), points per second (Z =−0.06, p= .956),

average seconds per image (Z = −0.36, p = .725), or NLU accuracy (Z = −0.13,

p= .907).
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These encouraging results suggest that our incremental DA segmenter achieves

a performance level that is sufficient for it to be integrated into our agent, enabling

the incremental segmentation of other DA types without significantly compromising

(or improving) the agent’s current performance level. These results provide a

complementary perspective on the various DA classification metrics reported in

Section 6.6.2.

The current baseline agent (Paetzel et al. (2015)) can only generate As-I and

As-S dialogue acts. In future work, the fully automated pipeline presented here will

enable us to expand the agent’s dialogue policies to support additional patterns

of interaction beyond its current skillset. For example, the agent would be better

able to understand and react to a multi-DA user utterance like and handles got it?

in Figure 6.1. By segmenting out and understanding the Q-YN got it?, the agent

would be able to detect the question and answer with an A-Y like yeah. Overall,

we believe the ability to understand the natural range of Director’s utterances will

help the agent to create more natural interaction patterns, which might receive a

better subjective rating by the human dialogue partner and in the end might even

achieve a better overall game performance, as ambiguities can be resolved quicker

and the flow of communication can be more efficient.

6.6.4 Conclusion - RDG-Image

In this chapter, we have defined and evaluated a sequential approach to incre-

mental DA segmentation and classification. Our approach utilizes prosodic, lexico-

syntactic and contextual features, and achieves an encouraging level of performance

in offline analysis and in policy simulations. We have presented our results in terms

of existing metrics for DA segmentation and also introduced additional metrics

that may be useful to other system builders. This work has been published in
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Manuvinakurike et al. (2016). In future work, we will continue this line of work by

incorporating dialogue policies for additional DA types into the interactive agent.

We expect that the resulting new capabilities will help improve user perceptions of

our agent by enabling richer and more natural patterns of interaction.

6.7 New Domain: Conversational Image editing

Photographs12 have emerged as a means for sharing information, effective story-

telling, preserving memories, and brand marketing among many other applications.

The advent of photo-centric social media platforms such as Instagram, Snapchat,

etc. along with easy access to high quality photo-taking devices has only made

photographs a more powerful medium. Photographs are often edited with the

intention of improving their quality (e.g., fixing the lighting), for use in a narrative

(e.g., for an ad campaign), for alteration (e.g., removing objects from the image),

for preservation of memories (by restoring old photographs), and for other reasons.

Social media platforms such as Snapchat, Instagram, etc. support popular and

extensively used editing methods called presets (or filters). Such presets can also be

found in cameras on many current smartphones, and can be applied to photographs

almost instantaneously. However, image editing is far from choosing the right

filter or preset values. Photo editing is a complex task often involving diligently

and skillfully executed steps that require expertise. Seeking professional help for

editing photographs is common, and can be seen in popular forums such as Reddit

Photoshop Request (https://www.reddit.com/r/PhotoshopRequest/) and Zhopped

(http://zhopped.com/), where users post their photographs and request help from

12“Photographs” and “images” as terms are used interchangeably in this work henceforth.
They both refer to digital photographs captured in any popular format that can be rendered on
the computer screen using popular programs.
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professionals. The professionals then either volunteer for free or do the job for a

fee. The process typically starts with users publicly posting their request and the

photograph they desire to be edited. These requests are formulated in an abstract

manner using natural language (Ex: “I love this photo from our trip to Rome.

Can someone please remove my ex from this photo? I am the one on the right.”),

rather than intricate multi-step instructions (Ex: “Free select the person on the left,

replace the region with the building on the bottom left using replacement tools, fix

the blotch by the healing tool...”). The professionals download these photographs,

edit them, and post them back. They have knowledge about the image editing

tool used, skills, time, and artistic creativity to perform the changes. If the users

are not happy with the results, they post their modification requests, and then

the professionals incorporate these changes and post the updated photographs.

While these forums are popular, such methods have a few drawbacks. Because the

expert editors edit the photographs without the requester being able to see the

changes being performed in real time, (i) the users are not able to provide real-time

feedback, (ii) it is hard for the users to provide requests for all needed modifications,

and (iii) the professional editors cannot ask for minor clarifications while editing

the photographs. These drawbacks often result in modifications that do not match

the users’ expectations. The alternative solution of the users performing the edits

themselves is difficult and time consuming as the image editing tools have a steep

learning curve.

Our ultimate goal is to develop a conversational agent that can understand

the user requests, perform the edits, guide the user by providing suggestions, and

respond in real time. In this chapter we present a novel corpus that captures the

conversation between the user who wants to edit a photograph and the expert

human wizard who performs the edits (playing the role of a future dialogue system).
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We introduce a novel annotation scheme for this task, and discuss challenging sub-

tasks in this domain. We focus specifically on incremental dialogue act detection.

Conversational image editing combines spoken language, dialogue, and computer

vision, and our real-world domain extends the literature on domains that are at

the intersection of language and computer vision.

Conversation in the context of visual information has been studied for a long

time. Clark & Wilkes-Gibbs (1986) studied reference resolution of simple fig-

ures called tangrams. Kennington & Schlangen (2015) performed incremental

understanding and incremental reference resolution respectively in a domain of

geometric shape descriptions, while Schlangen et al. (2016) resolved references to

objects in real-world example images. Much work has been done in the context

of gamified scenarios where the interlocutors interact and resolve references to

real-world objects (Kazemzadeh et al. (2014); Paetzel et al. (2014); Manuvinakurike

& DeVault (2015)). Also, such gamified scenarios have served as platforms for

developing/learning incremental dialogue policies regarding whether the system

should respond immediately or wait for more information (Paetzel et al. (2015);

Manuvinakurike et al. (2017)). Referential domains in the context of dialogue have

also been studied using virtual reality technologies and spatial constraints (Stoia

et al. (2008); Das et al. (2018)) as well as robots (Whitney et al. (2016); Skantze

(2017)).

Other gamified real-world scenarios involve object arrangement (DeVault &

Stone (2009)), puzzle completion (Iida et al. (2010); Takenobu et al. (2012)), map

navigation (Anderson et al. (1991); Lemon et al. (2001); Johnston et al. (2002)),

furniture-buying scenarios (Di Eugenio et al. (2000)), and treasure-hunt tasks in a

virtual environment (Byron & Fosler-Lussier (2006)). A multimodal interface for

image editing combining speech and direct manipulation was developed by Laput
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et al. (2013). With this interface a user can for example select a person’s hat in an

image and say “this is a hat”. Then the system learns to associate the tag “hat”

with the selected region of the image.

A more recent direction of research involving dialogue and vision has been in

the context of answering factual questions on images (Das et al. (2017); Antol et

al. (2015)) using the MS COCO dataset (Lin et al. (2014)). The task may also

involve a gamified scenario with the interlocutors playing a yes-no question-answer

game as in de Vries et al. (2017). In these works the focus is less on the dialogue

aspects and more on the factual aspects of the images, i.e., if an object is present

or what a certain component of the image is. Mostafazadeh et al. (2017) extended

this line of work with conversations grounded on images. Furthermore, Huang et

al. (2016) built a dataset of images with corresponding descriptions in sequence,

for the task of visual storytelling. Some recent work has started investigating the

potential of building dialogue systems that can help users efficiently explore data

through visualizations (Kumar et al. (2017)).

The problem of intent recognition or dialogue act (DA) detection has been

extensively studied. Below we focus on recent work on DA detection that employs

deep learning. People have used recurrent neural networks (RNNs) including long

short term memory networks (LSTMs), and CNNs (Kalchbrenner & Blunsom

(2013); Li & Wu (2016); Khanpour et al. (2016); Shen & Lee (2016); Ji et al.

(2016); Tran et al. (2017)). The works that are most similar to ours are by Lee &

Dernoncourt (2016) and Ortega & Vu (2017) who compared LSTMs and CNNs

on the same datasets. However, neither Lee & Dernoncourt (2016) nor Ortega &

Vu (2017) experimented with incremental DA detection as we do. Petukhova &

Bunt (2014) built models for incremental DA recognition. Most related to our work,

DeVault et al. (2011a) built models for incremental interpretation and prediction of
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utterance meaning and showed that incremental processing helps save time. In this

work, we add to the literature by lending support to the generality of the result

that incremental NLU can save time.

6.8 Data: Conversational Image Editing

The task of image editing is challenging for the following reasons: (i) The

user needs to understand whether changes applied to a given image fit the target

narrative or not. (ii) Image editing is a time consuming task. The user typically

experiments with various features often undoing, redoing, altering in increments,

or even completely removing previously performed edits before settling on the final

image edit. (iii) Users may know at an abstract level what changes they want

to perform, but be unaware of the image editing steps or parameters that would

produce the desired outcome. For example, a person’s face in a photo may look

flushed, but users may not know that adjusting the saturation and the temperature

settings to some specific values will change the photo to match their expectations.

(iv) Image editing tools are complicated due to the availability of innumerable

options, and can have a steep learning curve often requiring months of training.

Users may not be fully aware of the features and the functionality that are supported

by the given image editing tool.

Our task is particularly well suited for spoken dialogue research, and in particular

incremental dialogue processing. Besides understanding the user utterances and

mapping them to commands supported by the tool, the task also involves a high

degree of interactivity that requires real-time understanding and execution of the

user requests. For instance, in a dialogue setting and in order to increase the

saturation value, the user can utter “more, more, more” until the desired target

166



value has been set. An annotation scheme should support such incremental changes

as well as requests for new changes, updates of ongoing changes (including undoing

and redoing), comparing the current version of the image with previous versions, and

question-answer exchanges between the user and the wizard (including suggestions,

clarifications, and feedback).

6.8.1 Data Collection

We collected spoken dialogues between users (who request image edits) and

wizards (who perform the edits); a total of 28 users and 2 wizards participated in

the collection. Prior to data collection, our wizards were trained in executing a

range of image edits.

We tested several image editing tools and found that very simple tools that

did not support a high degree of functionality resulted in extremely restrictive

dialogues lacking variety. Conversely, tools with rich functionality, such as Adobe

Photoshop or GNU GIMP, resulted in user image edit requests that required hours

to complete. Such interactions yielded creative image edit requests but did not

yield timely dialogue phenomena. The tool ultimately used for image editing in

this study was Adobe Lightroom. This tool produced diverse and highly interactive

dialogues for image editing. The tool is popular among photographers and supports

a wide variety of functionality. Users were able to make creative requests with few

restrictions, and these requests could often be executed rapidly. The wizards were

trained expert image editors who knew how to use the tool well.

6.8.2 Experiment Setup

The recruited users were given images (digital photographs) sampled from the

Visual Genome dataset (Krishna et al. (2017)) which in turn were sampled from
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the MS COCO dataset (Lin et al. (2014)). The images used for data collection were

selected to reflect real-world scenarios. Thus the images sampled were representative

of images regularly edited by users. The photos selected from the sampled image

datasets were based on observations of 200 random request submissions from

Zhopped and Reddit Photoshop forums. The forum submissions were often about

eight high-level categories of images: animals, city scenes, food, nature/landscapes,

indoor scenes, people, sports, and vehicles. Thus we selected images from the MS

COCO dataset that fit into at least one of these eight categories.

Users were given one photograph from each category in an experiment session.

They were given time to think about the changes they wanted to perform before

the dialogue session, and were informed about the tool that was going to be used

and the fact that it did not support complex functionality. If they were unsure of

what functionality was supported they were instructed to ask the wizard. Users

were asked to perform as many edits as they desired per image. Participants were

encouraged (but not required) to participate for 40 minutes, and communicated via

remote voice call. Users did not have the freedom to perform the edits themselves.

Any edits they wished to be performed on the image had to be conveyed to the

wizard through voice. This was to ensure that all the changes that the users wanted

to achieve were captured in spoken language. The wizard responded to the requests

in a natural human-like manner. The screen share feature was enabled on the

wizard’s screen so that the user could see in real time the wizard’s edits on the

image. While users were not explicitly told that the wizard was human, this was

obvious due to the naturalness of the conversation.

The interaction typically started with the user describing a given image to the

wizard. The wizard was not aware of the images provided to the user. The wizard

chose the image from the available images based on the user description; following
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User:    I don’t like the guy creepily                         um a little bit higher till the black               yup that’s good                   um and from the bottom the wheel is
            staring so let’s crop top down                      frame                                                                                                    absolutely useless lets get rid of it
Wizard:                                                   ok                                                                    ok

User:         that’s good much better               let’s black and                         uh how do you adjust the                                         what happens if you go all
                                                                      white this picture                     black and whites                                                       the way up
Wizard:                                              alright                                alright                                                 uh with the contrasts

User:                                                                                                            can you keep going down I’ll          right there
                                                                                                                     tell you when to stop
Wizard:     this is all the way up                     this is all the way down                                                          ok

TIME

TIME

TIME

Figure 6.5: Sample interaction between the user and the wizard.

user confirmation, the image was then loaded for editing. The image editing session

generally began with the user describing desired changes to the image in natural

language. The wizard interpreted the request provided by the user and performed

these edits on the image. The interaction continued until the user was satisfied

with the final outcome. Figure 6.5 shows an example of an interaction between the

user and the wizard. Figure 6.6 shows the interface as seen by the user and the

wizard.

6.8.3 Data Preparation

The conversations were recorded using the OBS software which is a free open-

source program for streaming video and audio. Then the audio data were extracted

from the videos. Transcription was done on small audio chunks which was more
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Figure 6.6: The interface as seen by the user and the wizard. We use Adobe
Lightroom as the image editing program.

convenient and faster than transcribing long clips. The small audio clips were

obtained by splitting the audio at the silence points using the webRTC Voice

Activity Detection (VAD)13. Transcriptions were performed using the Amazon

Mechanical Turk platform. The transcribed audio data were then validated and

annotated with DAs, actions, and entities using a custom-built web annotation tool.

The annotations were performed by two expert annotators who were well versed

with the new annotation scheme that we developed (see 6.8.4). Figure 6.7 shows

the tool that was built for annotating the dataset. The tool was web-based, with

the annotators being able to see the video, audio interaction, and the transcriptions

shown in small chunks (typically around 45 seconds) which were to be annotated by

selecting the text and the corresponding DA. In total 28 users contributed to 129

dialogues with 8890 user utterances, 4795 wizard utterances, and 858 minutes of

speech. The total number of tokens in the user and wizard utterances is 59653 and

13https://pypi.python.org/pypi/webrtcvad
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Figure 6.7: Web annotation tool used to annotate the dialogue. The figure shows
the wizard and the user utterance aligned with time. The video element is shown
to the left. The annotation is performed by highlighting the text and clicking the
buttons corresponding to the DA.

# users 28
# dialogues 129
# user utterances 8890
# Wizard utterances 4795
# time (raw) 858 min
# user tokens 59653
# user unique tokens 2299
# Wizard tokens 26284
# Wizard unique tokens 1310
# total unique tokens 2650

Table 6.12: Data statistics.

26284 respectively. Also, there are 2299 unique user tokens, 1310 unique wizard

tokens, and 2650 total unique tokens. Table 6.12 shows the statistics of the data.

6.8.4 Annotation Scheme

We designed a set of 26 DA types, for the ultimate goal of building a conversa-

tional agent. Some of the DAs were motivated by (Bunt (2009)), while others are

specific to the domain of conversational image editing. DAs apply to segmented

utterances, with each segment annotated with one DA. Note that an utterance is

defined as a portion of speech preceded and/or followed by a silence interval greater
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than 300ms. The DA types are summarized in Table 6.13. Utterances from both

the wizard and the user were annotated. In order to measure the validity of the

annotation scheme we calculated inter-rater reliability for DA labeling by having

two expert annotators annotate a single dialogue session of 20 minutes; kappa was

0.81 which indicates high agreement. Below we elaborate on the DA types.

Image Edit Requests (IER). Image edit requests are grouped into four

categories. New requests (IER-N) are edits that the users desire to see in the image,

which are different from previous requests. These requested changes are either

abstract (“it’s flushed out, can you fix it?”) or exact (“change the saturation to

20%”). The wizard interprets these requests and performs the changes. Update

requests (IER-U) are refinements to a previous request (users often request updates

until the target is achieved). These include the addition of more details (“change it

to 50%”) to the IER-N (“change the saturation”), issuing corrections to the IER

(“can you reduce the value again?”), modifiers (more, less), etc. Revert requests

(IER-R) occur when users want to undo the changes done to the image until a certain

point. The IER-R act is used if the user reverts the complete changes performed,

compared to only changing the values. For example, if the user is modifying the

saturation of the image and across multiple turns changes the value of saturation

from 20% to 30% and back to 20%, the user’s action is labeled as IER-U. If the user

wants all the saturation changes to be undone, the user’s action is labeled as IER-R.

Compare requests (IER-C) occur when users want to compare the current version

of the image to a previous version (before the most recent changes took place). The

image edit requests IER-N and IER-U are labeled further with action and entity

labels, which specify the nature of the edit request (the use of actions and entities is

inspired by the intents and entities of Williams et al. (2015)). These labels serve as

an intermediary language to map a user’s utterance to executable commands that
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Dialogue Act Description
Image Edit Request (IER) user requests changes to the image (IER-

N, IER-U, IER-R, IER-C)
Comment (COM) user comments on the image or edits

(COM-L, COM-D, COM-I)
Request Recommendation (RQR) user requests recommendation from the

wizard on editing ideas
Question Feature (QF) user asks question on the functionality

of the editing tool
Question Image Attribute (QIA) user asks question about the image
Request Feedback (RF) user requests feedback about the image

edits
Image Location (IL) user & wizard locate the image at the

beginning
Action Directive (AD) user asks wizard to act on the applica-

tion, e.g., “click the button”
Finish (FIN) user wants to end the editing session
Suggestions (S) wizard suggests ideas for editing the

image
Request IER (RQIER) wizard requests user to provide IER
Confirm Edit (CE) wizard confirms the edit being per-

formed
Feature Preference (FP) wizard requests which tool option to use

for achieving the user edits
Narrate (N) wizard gives narration of the steps being

performed
Elucidate (E) these are wizard responses to QF & QIA
No Support (NS) wizard informs user that the edit is not

supported by the tool
Respond Yes/No (RSY/RSN) yes/no response
Acknowledge (ACK) acknowledgment
Discourse Marker (DM) discourse marker
Other (O) all other cases

Table 6.13: Dialogue act types (Manuvinakurike et al. (2018a,b)).

can be carried out in an image editing program. Actions are a predefined list of

18 functions common to most image editing programs, such as cropping. Each IER

contains at most one action. The entities provide additional information without

which the action cannot be applied to the given image. The entities are made up
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Segments Dialogue Act Action Attribute Loc/Obj Mod/Val
uh O - - - -
make the tree brighter IER-N Adjust brightness tree -
like a 100 IER-U Adjust brightness tree 100
nope too much COM-D - - - -
perfect COM-L - - - -
let’s work on sharpness IER-N Adjust sharpness - -

Table 6.14: Example annotations of dialogue acts, actions, and entities.

of attributes (saturation, contrast, etc.), region/object (location where the image

edit action is to be applied), value (modifiers or cardinal values accompanying the

action-attribute). Table 6.14 shows example annotations. So when the user says

“make the tree brighter to 100”, it is important to understand the exact user’s

intent and to translate this into an action that the image editing tool can perform.

For this reason we use action-entities tuples <action, attribute, location/object,

value>. The user utterances are mapped to DAs and then to a pre-defined set of

image action-entities tuples which are translated into image editing actions. It is

beyond the scope of this work to perform the image editing. We focus instead only

on the DA detection problem which does not require any information about actions

and entities.

Comments (COM). Three types of user comments are annotated: (i) Like

comments (COM-L) where users show a positive attitude towards the edits that

are being performed (“that looks interesting”, “that’s cool”). (ii) Dislike comments

(COM-D) are the opposite of like comments (“I don’t like that”, “I don’t think it’s

what I want”). (iii) Image comments (COM-I) are neutral user comments such

as comments on the image (“it looks like a painting now”, “her hair looks pretty

striking”).

Suggestions (S). Suggestions were the recommendations issued by the wizards

to the users recommending the image editing actions. Suggestions also included
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the utterances that were issued with the goal of helping the user achieve the final

image edits desired. The wizard provides new suggestions (S-N), e.g., “do you want

to change the sharpness on this image?”. The wizard could also provide update

suggestions for the current request under consideration (S-U), e.g., “sharpness of

about 50% was better”.

Requests & Responses. The user may ask the wizard to provide suggestions

on the IERs. These are labeled as “Request” acts. “Yes” and “no” responses

uttered in response to the wizard’s suggestions are labeled as RS-Y or RS-N.

Other user actions are labeled as questions about the features supported by the

image editing tool, clarifications, greetings, and discourse markers. In total there

are 26 DA labels, including the DA “Other (O)” which covers all of the cases that

do not belong in the other categories. Table 6.15 shows the prevalence of our 26

DAs in the corpus (percentage of words and of utterance segments in the corpus per

DA). For the task of incremental DA detection we focus only on the user utterances

only, and in particular, in classifying user utterances into one of 10 labels: IER-N,

IER-U, IER-R, IER-C, RS-Y, RS-N, COM-L, COM-D, COM-I, and O.

Table 6.16 shows example utterances for some of the most frequently occurring

DAs in the corpus. In these examples it can be seen that, with the exception of 3,

all the other DAs can be identified with some degree of certainty without waiting

for the user to complete the utterance. Also, Figure 6.8 shows example IERs. One

of the motivations for our work is to identify the right DA at the earliest time. Not

only is this more efficient but also more natural. The human wizard can begin to

take action even before the utterance completion, e.g., in utterance 1 (Table 6.16)

the wizard clicks the “vignette” feature in the tool before the user has finished

uttering their request. Another goal is to measure potential savings in time gained

through incremental processing, i.e., how much we save in terms of number of words
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Dialogue Act % Words % Utterance Dialogue Act % Words % Utterance
Segments Segments

IER-N 19.4 9.2 FIN 1.5 1.0
IER-U 16.3 12.5 S 4.7 4.0
IER-R 1.0 0.8 RQIER 2.1 2.6
IER-C 0.5 0.3 CE 1.6 1.9
COM-L 4.9 6.0 FP 0.1 0.1
COM-D 1.8 1.5 N 3.1 4.2
COM-I 2.5 1.5 E 1.3 0.7
RQR 0.7 0.0 NS 1.0 0.6
QF 1.1 0.6 RSY 2.3 6.8
QIA 0.3 0.2 RSN 0.9 1.2
RF 0.0 0.0 ACK 6.4 17.6
IL 3.0 1.5 DM 2.3 6.5
AD 4.8 3.9 O 16.4 14.8

Table 6.15: Percentages of words and of utterance segments for each DA type; “0.0”
values are close to 0.

when we identify the DA earlier rather than waiting until the full completion of

the utterance, without sacrificing performance.

The transitions between DAs for the user acts were analyzed (for this analysis

we ignore the label “Other-O”). We found that the most common transition was

from IER-U to IER-U. This is particularly interesting as it shows that users provide

a series of updates before attaining the final image edits. This transition was

more common than IER-N to IER-U, which is the second most frequently found

transition. Users were found to like the image edits after IER-Us, and after issuing

a COM-L (like edit) comment they usually move on to the next IER. We also found

that when users disliked the edits (COM-D) they did not entirely cancel the edits

but continued updating (IER-U) their requests until the final image version fit their

needs. Transitions from IER-N to IER-N were also common; users could issue a

complete new image edit request IER-N and then move on to another new image

edit request IER-N.

In this section, we described our data collection process and novel DA labeling

scheme. The corpus supports research and development in areas such as incremental
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Utterance Tag
1 add a vignette since it’s also

encircled better
IER-N

2 can we go down to fifteen on
that

IER-U

3 go back to .5 IER-U
4 actually let’s revert back IER-R
5 can you compare for me

before and after
IER-C

6 I like it leave it there please COM-
L

7 no I don’t like this color COM-
D

Table 6.16: Examples of some of the most commonly occurring DAs in our corpus.

intent recognition (Manuvinakurike et al. (2018a)), dialogue modeling, and dialogue

state tracking. Furthermore, the dataset is constructed using richly annotated

images, which makes it an ideal platform for studying reference resolution in images,

question answering, image-grounded dialogue modeling, tracking user likeness of

images, and user modeling (providing suggestions to users depending on their

preferences and knowledge of the tool).

6.9 Model Design: Incremental Dialogue Act

Identification

For our experiments we use a training set sampled randomly from 90% of the

users (116 dialogues for training, 13 dialogues for testing). We use word embedding

features whose construction is described in Section 6.9.1. Figure 6.11 shows the

visual presentation of the utterances embeddings using t-SNE (Maaten & Hinton

(2008)).
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Tag User Edit Requests

IER-N I want to um add more focus on the
boat

IER-N can you make the water uh nicer
color

IER-N uh can we crop out uh little bit off
the bottom

IER-N is there a way to add more clarity
IER-N can we adjust the shadows
IER-U more [saturation]
IER-U can we get rid of the hints of green

in it
IER-U bluer
IER-U little bit more from the left [crop]
IER-R can you unfocus it
IER-C can you show me before and after

Figure 6.8: Example user edit requests. Only two bounding boxes are labeled in
the image for better reading. The actual images have more extensive object labels.

6.9.1 Constructing Word Embeddings

We convert the words into vector representations to train our deep learning

models (and a variation of the random forests). We use out-of-the-box word vectors

available in the form of GloVe embeddings (Pennington et al. (2014)) (trained with

Wikipedia data), or we employ fastText (Bojanowski et al. (2016)) to construct
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embeddings using the data from the Visual Genome image region description

phrases, the dialogue training set collected during this experiment, and other data

related to image editing that we have collected (image edit requests out of a dialogue

context). From now on these embeddings trained with fastText will be referred to

as “trained embeddings”.

As we can see in Table 6.17, for models E (LSTMs) and I (CNNs) we use word

embeddings trained with fastText on the aforementioned datasets. The Vanilla

LSTM (model D) does not use GloVe or trained embeddings, i.e., there is no

dimensionality reduction. Model H (CNNs) uses GloVe embeddings. The vectors

used in this work (both GloVe and trained embeddings) have a dimension of 50. For

trained embeddings, the vectors were constructed using skipgrams over 50 epochs

with a learning rate of 0.5.

Recent advancements in creating a vector representation for a sentence were

also evaluated. We used the Sent2Vec (Pagliardini et al. (2018)) toolkit to get a

vector representation of the sentence and then used these vectors as features for

models G and J. Note that LSTMs are sequential models where every word needs

a vector representation and thus we could not use Sent2Vec.

6.9.2 Model Construction

We use Weka (Hall et al. (2009)) for the Naive Bayes and Random Forest models,

Mallet (McCallum (2002)) for the CRF model (linear chain), and TensorFlow for

the LSTM and CNN models. The models B, C, D, and F in Table 6.17 use bag-of-

words features. The CNN has 2 layers, with the first layer containing 512 filters

and the second layer 256 filters. Both layers have a kernel size of 10 and use ReLU

activation. The layers are separated by a max pooling layer with a pool size of

10. The dense softmax is the final layer. We use the Adam optimizer with the
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Model Accur
A Baseline (Majority) * 0.32
B Naive Bayes * 0.41
C Conditional Random Field

*
0.51

D LSTM (Vanilla) * 0.53
E LSTM (trained word

embeddings) *
0.55

F Random Forest * 0.72
G Random Forest (with

Sent2Vec)
0.73

H CNN (GloVe embeddings) 0.73
I CNN (trained word embed-

dings)
0.74

J CNN (Sent2Vec) 0.74

Table 6.17: DA classification results for complete speech segments using the
transcripts. * indicates significant difference (p < 0.05) between the best performing
models (I and J) and the other models.

categorical cross entropy loss function. The LSTM cell is made up of 2 hidden

layers. We use a dropout with keep_prob = 0.1. We put the logits from the last

time steps through the softmax to get the prediction. We use the same optimizer

and loss function as for the CNN since they were found to be the best performing.

Table 6.17 shows the DA classification accuracy for all models on our test set.

Here we assume that we have the correct utterance segmentation for both the

training and the test data. Note that because of the “Other” DA all words in a

sentence will belong to a segment and a DA category.

6.9.3 Results

Table 6.18 shows the savings in terms of overall number of words and average

number of words saved per sentence, for each DA in the corpus.
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Figure 6.9: Confidence contours based on every word. The correct tag is IER-N.
The confidence contours at the word level take time to stabilize.

Figure 6.9 shows the confidence curves for predicting the DA with the progression

of every word. From the figure on the right it is clear that after listening to the

word “photo” the classifier is confident enough that the user is issuing the IER-N

command. Here the notion of incrementality is to predict the right DA as early as

possible and evaluate the savings in terms of the number of words. While from this

example it is clear that the correct DA can be identified before the user completes

the utterance, it is not clear when to commit to a DA. The trade-off involved in

committing early is often not clear. Table 6.18 shows the maximum savings that

can be achieved in an ideal scenario where an oracle (an entity informing if the

prediction is correct or wrong as soon as the prediction is made) identifies the

earliest point of predicting the correct DA.

The method used for calculating the savings is shown in Table 6.19. In this

example for the utterance “I think that’s good enough”, we feed the classifier the

utterances one word at a time and get the classifier confidence. The class label

with the highest score is obtained. Here the oracle tells us that we could predict

the correct class COM-L as soon as “I think that’s good” was uttered and thus the

word savings would be 1 word.
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Figure 6.10: % savings (for correct predictions) and accuracy (% correct) of
incremental predictions of DAs as a function of confidence level.

Tag % Overall Average
Word Word Savings
Savings per Utterance

IER-N 37 3.96
IER-U 39 2.72
IER-R 41 1.63
IER-C 40 1.69
COM-L 36 1.13
COM-D 41 1.38
COM-I 37 2.56
RS-Y 28 0.34
RS-N 37 0.69
O 47 3.95

Table 6.18: Percentage of overall word savings and average number of words saved
per utterance, for each DA.

However, in real-world scenarios the oracle is not present. We use several confi-

dence thresholds and measure the accuracy and the savings achieved in predicting

the DA without the oracle. For the predictions in the test set we get the accuracy

for each of the thresholds. Then if the predictions are correct, we calculate the

savings. Thus Figure 6.10 shows the word savings for each confidence threshold

when the predictions are correct for that threshold.
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Utterance Max
conf

Class

I 0.2 O
I think 0.3 O
I think that’s 0.3 O
I think that’s good 0.5 COM-L
I think that’s good
enough

0.5 COM-L

Table 6.19: Example incremental prediction. The correct label is COM-L.
Columns 2 and 3 show the maximum confidence level and model prediction after
each word is uttered.

So in the example of Table 6.19, for a confidence threshold value of 0.4, we extract

the class label assigned for the utterance once the max confidence score exceeds

0.4. In this case once the word “good” was uttered by the user the confidence score

assigned (0.5) was higher than the threshold value of 0.4 and we take the predicted

class as COM-L. The word savings in this case is 1 word and our prediction is

correct. But for a confidence threshold value of 0.2, our prediction would be the tag

O which would be wrong and there would be no time savings. Figure 6.10 shows

that as the confidence threshold values increase the accuracy of the predictions

rises but the savings decrease.

Researchers have used simulations (Paetzel et al. (2015)), classifiers (DeVault et

al. (2011a)) or a reinforcement learning policy (Manuvinakurike et al. (2017)) to

learn the right points of interrupting the user which are dependent on the language

understanding confidence scores. Here we do not focus on learning such policies.

Instead, our work is a precursor to learning an incremental system dialogue policy.

We presented “conversational image editing”, a novel real-world application

domain, which combines dialogue, visual information, and the use of computer

vision. We discussed why this is a domain particularly well suited for incremental

dialogue processing. We built models for incremental intent identification based on
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Figure 6.11: Visualization of the sentence embeddings of the user utterances used
for training. The t-SNE visualizations after half-way through the utterances are
shown. The utterances that have the same DAs can be seen grouping together.
This shows that the complete utterance is not always needed to identify the correct
DA.

deep learning and traditional classification algorithms. We calculated the impact of

varying confidence thresholds (above which the classifier’s prediction is considered)

on classification accuracy and savings in terms of number of words. Our experiments

add to previous evidence (DeVault et al. (2011a)) that incremental intent processing

could be more efficient for the user and save time in accomplishing tasks in SDS.
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6.10 Contributions

In this chapter, we developed methods for incremental language understanding

towards the development of SDS. We developed novel models for incremental

segmentation and DA detection. It has not been shown before in the literature

what the impact of such an incremental operation (segmentation and DA detection)

is in an SDS pipeline. In this chapter, we showed that such an operation in an

incremental SDS contributes towards increasing processing capabilities without

impacting the speed of processing. We have shown that including incremental

language understanding capabilities in the SDS pipeline could help save time in

SDS. We then applied incremental segmentation and DA detection to a novel real-

world domain (conversational image editing) and showed that such processing helps

achieve savings in terms of time when detecting user intentions. Such incremental

processing could help develop more efficient dialogue systems in the near future.

The discussions in this chapter have been published in (Manuvinakurike et al.

(2018a); Manuvirakurike et al. (2018); Manuvinakurike et al. (2018b); Brixey et

al. (2018)). In the next chapter, I will discuss performing segmentation and DA

detection using visually grounded models.
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Chapter 7

Vision, Language &

Incrementality

“Only thing worse than being blind is having sight but no vision”

– Helen Keller, Author, activist, lecturer

7.1 Introduction

In this chapter, we present and evaluate a language processing pipeline that

enables an automated system to detect and understand complex referential lan-

guage about visual objects depicted on a screen. This is an important practical

capability for present and future interactive SDS. There is a trend toward increasing

deployment of SDS for smartphones, tablets, automobiles, TVs, and other settings

where information and options are presented on-screen along with an interactive

speech channel in which visual items can be discussed (Celikyilmaz et al. (2014)).

Similarly, for future systems such as smartphones, quadcopters, or self-driving cars

that are equipped with cameras, users may wish to discuss objects visible to the

system in camera images or video streams.

A challenge in enabling such capabilities for a broad range of applications is

that human speakers draw on a diverse set of perceptual and language skills to

communicate about objects in situated visual contexts. Consider the example

in Figure 7.1, drawn from the corpus of RDG-Pento games (discussed further in
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Director: this one is kind of a uh a blue
T and a wooden w sort of the
T is kind of malformed

Matcher: okay got it

Figure 7.1: In an RDG-Pento game, the Director is describing the image highlighted
in red (the target image) to the Matcher, who tries to identify this image from
among the 8 possible images. The figure shows the game interface as seen by the
Director including a transcript of the Director’s speech.

Section 7.4). In this example, a human in the Director role describes the visual

scene highlighted in red (the target image) to another human in the Matcher role.

The scene description is provided in one continuous stream of speech, but it includes

three functional segments each providing different referential information: [this one

is kind of a uh a blue T ] [and a wooden w sort of ] [the T is kind of malformed].

The first and third of these three segments refer to the object at the top left of

the target image, while the middle segment refers to the object at bottom right.

An ability to detect the individual segments of language that carry information

about individual referents is an important part of deciphering a scene description
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like this. Beyond detection, actually understanding these referential segments in

context seems to require perceptual knowledge of vocabulary for colors, shapes,

materials and hedged descriptions like kind of a blue T. In other game scenarios, it

is important to be able to understand plural references like two brown crosses and

relational expressions like this one has the L on top of the T.

A variety of vocabulary knowledge is needed, as different speakers may describe

individual objects in very different ways (the object described as kind of a blue

T may also be called a blue odd-shaped piece or a facebook). When many scenes

are described by the same pair of speakers, the pair tends to entrain or align to

each other’s vocabulary (Garrod & Anderson (1987)), for example by settling on

facebook as a shorthand description for this object type. Finally, to understand a

full scene description, the Matcher needs to combine all the evidence from multiple

referential segments involving a group of objects to identify the target image.

In this chapter, we define and evaluate a language processing pipeline that allows

many of these perceptual and language skills to be integrated into an automated

system for understanding complex scene descriptions. We take the challenging

visual reference game RDG-Pento, shown in Figure 7.1, as our testbed, and we

evaluate both human-human and automated system performance in a corpus study.

Our automated pipeline, discussed in Section 7.5, includes components for

learning perceptually grounded word meanings, segmenting a stream of speech,

identifying the type of referential language in each speech segment, resolving the

references in each type of segment, and aggregating evidence across segments to

select the most likely target image. Our technical approach enables all of these

components to be trained in a supervised manner from annotated, in-domain,

human-human reference data. Our quantitative evaluation, presented in Section 7.6,

looks at the performance of the individual components as well as the overall pipeline,
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and quantifies the strong importance of segmentation, segment type identification,

and speaker-specific vocabulary entrainment for improving performance in this

task.

7.2 Related Work

The work described in this chapter directly builds off of (Paetzel et al. (2015))

as the same RDG game scenario was used, however reference was only made to

single objects in that work. The work here also builds off of (Kennington &

Schlangen (2015)) in the same way in that their work only focused on reference

to single objects. The extension of this previous work to handle more complex

scene descriptions required substantial composition on the word and segment levels.

The segmentation presented here was fairly straight forward (similar in spirit

to chunking as in Marcus (1995)). Composition is currently an active area in

distributional semantics where word meanings are represented by high-dimensional

vectors and composition amounts to some kind of vector operation (see Milajevs

et al. (2014) for a comparison of methods). An important difference is that here

words and segments are composed at the denotational level (i.e., on the scores given

by the WAC (Words-As-Classifiers) model, akin to referentially afforded concept

composition (Mcnally & Boleda (2015))).

Also related are the recent efforts in automatic image captioning and retrieval,

where the task is to generate a description (a caption) for a given image or retrieve

one being given a description. A frequently taken approach is to use a convolutional

neural network to map the image into a dense vector, and then to condition a

neural language model on this to produce an output string or use it to map the

description into the same space (Vinyals et al. (2015); Devlin et al. (2015); Socher
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et al. (2014)). See also (Fang et al. (2015)), which is more directly related to our

model in that they use “word detectors” to propose words for image regions.

Han et al. (2015) directly relates to the work here in that the WAC was applied

to similar geometric objects and images were retrieved from composed, individual

referring expressions.

7.3 Words-As-Classifiers

7.4 The RDG-Pento Game

The RDG-Pento (Rapid Dialogue Game-Pentomino) game is a two player

collaborative game. RDG-Pento is a variant of the RDG-Image game. As in

RDG-Image, both players see 8 images on their screen in a 2X4 grid as shown in

Figure 7.1. One person is assigned the role of Director and the other person that

of Matcher. The Director’s screen has a single target image (TI) highlighted with a

red border. The goal of the Director is to uniquely describe the TI for the Matcher

to identify among the distractor images. The 8 images are shown in a different

order on the Director and Matcher screens, so that the TI cannot be identified by

grid position. The players can speak freely until the Matcher makes a selection.

Once the Matcher indicates a selection, the Director can advance the game.

In RDG-Pento, the individual images are taken from a real-world, tabletop

scene containing an arrangement of between one and six physical Pentomino objects.

Individual images with varying numbers of objects are illustrated in Figure 7.2. The

8 images at any one time always contain the same number of objects; the number

of objects increases as the game progresses. Players play for 5 rounds, alternating

roles. Each round has a time limit (about 200 seconds) that creates time pressure
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for the players, and the time remaining ticks down in a countdown timer. For every

correct guess made by the Matcher, both players win a micro-award of $0.02.

7.4.1 Data Collection

The corpus used here was collected using the Pair Me Up (PMU) web framework.

To create this corpus, 42 pairs of native English-speakers located in the U.S. and

Canada were recruited using Amazon Mechanical Turk. Game play and audio data

were captured for each pair of speakers (who were not co-located and communicated

entirely through their web browsers), and the resulting audio data was transcribed

and annotated as described in section 7.4.2. 16 pairs completed all 5 game rounds,

while the remaining crowd-sourced pairs completed only part of the game for various

reasons. As our focus is on understanding individual scene descriptions, our data

set here includes data from the 16 complete games as well as partial games. A

more complete description and analysis of the corpus can be found in Zarrieß et al.

(2016).

7.4.2 Data Annotation

We annotated the transcribed Director and Matcher speech through a process of

segmentation, segment type labeling, and referent identification. The segment types

are shown in Table 7.1, and example annotations are provided in Figure 7.2. The

annotation is carried out on each target image subdialogue in which the Director

and Matcher discuss an individual target image. The segmentation and labeling

steps create a complete partition of each speaker’s speech into sequences of words

with a related semantic function in our framework.

Sequences of words that ascribe properties to a single object are joined under

the SIN label. Our SIN segment type is not a simple syntactic concept like “singular

191



Figure 7.2: Example scene descriptions for three TIs.

NP referring expression”. The SIN type includes not only simple singular NPs like

the blue s but also clauses like it’s the blue s and conjoined clauses like its like a

harry potter and its like maroon (Figure 7.2). The individuation criterion for SIN

is that a SIN segment must ascribe properties only to a single object; as such it

may contain word sequences of various syntactic types.

Sequences of words such as the two crosses that ascribe properties to multiple

objects are joined into a segment under the MUL label.

Sequences of words that describe a geometric relation between objects are

segmented and given a REL label. These are generally prepositional expressions,
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Segment type Label Examples
Singular SIN this is a green t, plus sign
Multiple objects MUL two Zs at top, they’re all green
Relation REL above, in a diagonal
Others OT that was tough, lets start

Table 7.1: Segment types, labels, and examples.

and include both single-word prepositions (underneath, below) and multi-word

complex prepositions (Quirk et al. (1985)) which include multiple orthographic

words (“next to”, “left of”, “in front of”, etc.). The REL segments generally describe

geometric relations between objects referred to in SIN and MUL segments. An

example would be [MUL two crosses] [REL above] [MUL two Ts].

All other word sequences are assigned the type Others and given an OT label.

This segment type includes acknowledgments, confirmations, feedback, and laughter,

among other dialogue act types not addressed in this work.

For each segment of type SIN, MUL, or REL, the correct referent object or

objects within the target image are also annotated. This annotation scheme was

designed to work well with the model for word-level understanding, discussed

further in Section 7.5.3.

In the dataset, there are a total of 4132 target image speaker transcripts in

which either the Director’s or the Matcher’s transcribed speech for a target image

is annotated. There are 8030 annotated segments (5451 Director segments and

2579 Matcher segments). There are 1372 word types and 55,238 word tokens.

7.5 Language Processing Pipeline

In this section, we present our language processing pipeline for segmentation and

understanding of complex scene descriptions. The modules, decision-making, and
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Figure 7.3: Information flow during processing of an utterance. The modules
operate incrementally, word-by-word; as shown here, this can lead to revisions of
decisions.

information flow for the pipeline are visualized in Figure 7.3. The pipeline modules

include a Segmenter (Section 7.5.1), a Segment Type Classifier (Section 7.5.2), and

a Reference Resolver (Section 7.5.3). In the coming subsections, we describe each

of these modules, while the evaluation of each module and of the full pipeline is

presented in Section 7.6.

In this chapter, we focus on how our pipeline could be used to automate the

role of the Matcher in the RDG-Pento game. We consider the task of selecting the

correct target image based on a human Director’s transcribed speech drawn from

our RDG-Pento corpus.

The pipeline is designed however for eventual real-time operation using incremen-

tal automatic speech recognition results, so that in the future it can be incorporated

into a real-time interactive dialogue system. We view it as a crucial design constraint
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on our pipeline modules that the resolution process must take place incrementally;

i.e., processing must not be deferred until the end of the user’s speech arrives. This

is because humans resolve (i.e., comprehend) speech as it unfolds, and incremental

processing (i.e., processing word by word) is important to developing an efficient

and natural speech channel for interactive systems (Skantze & Schlangen (2009);

Paetzel et al. (2015); DeVault et al. (2009); Aist et al. (2007b)). In the current

study, we have therefore provided the human Director’s correctly transcribed speech

as input to our pipeline on a word-by-word basis, as visualized in Figure 7.3. Our

results in Section 7.6 evaluate the performance of the pipeline at the end of the

Director’s speech for each target image.

7.5.1 Segmenter

The segmenter module is tasked with identifying the boundary points between

segments. In our pipeline, this task is performed independently of the determination

of segment types, which is handled by a separate classifier (Section 7.5.2).

Our approach to segmentation is similar to (Celikyilmaz et al. (2014)) which

used CRFs for a similar task. Our pipeline currently uses linear-chain CRFs to find

the segment boundaries, implemented with Mallet (McCallum (2002)). Using a

CRF trained on the annotated RDG-Pento data set, we identify the most likely

sequence of word-level boundary tags, where each tag indicates if the current word

ends the previous segment or not.1 An example segmentation is shown in Figure 7.3,

where the word sequence weird L to the top left of is segmented into two segments,

[weird L] and [to the top left of].

1We currently adopt this two-tag approach rather than BIO tagging as our tag-set provides a
complete partition of each speaker’s speech.
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The features provided to the CRF include unigrams2, the speaker’s role, part-of-

speech (POS) tags obtained using the Stanford POS tagger (Toutanova & Manning

(2000)), and information about the scene such as the number of objects.

7.5.2 Segment Type Classifier

The segment type classifier assigns each detected segment with one of the type

labels in Table 7.1 (SIN, MUL, REL, OT). This label informs the Reference Resolver

module in how to proceed with the resolution process, as explained below.

The segment type labeler is an SVM classifier implemented in LIBSVM. Features

used include word unigrams, word POS, user role, number of objects in the TI,

and the top-level syntactic category of the segment as obtained from the Stanford

parser (Manning et al. (2014)). Figure 7.3 shows two examples of output from the

segment type classifier, which assigns SIN to [weird L] and REL to [to the top left

of].

7.5.3 Reference Resolver

We introduce some notation to help explain the operation of the reference

resolver (RR) module. When a scene description is to be resolved, there is a visual

context in the game which we encode as a context set C = I1, ..., I8 containing the

eight visible images (see Figure 7.1). Each image Ik contains n objects {ok
1, . . . ,o

k
n},

where n is fixed per context set, but varies across context sets from n= 1 to n= 6.

The set of all objects in all images is O = {ok
l }, with 0< k ≤ 8,0< l ≤ n.

When the RR is invoked, the Director has spoken some sequence of words

which has been segmented by earlier modules into one or more segments Sj =

2Words of low frequency (i.e., <5) are replaced with a fixed symbol.
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w1:mj , and where each segment has been assigned a segment type type(Sj) ∈

{SIN,MUL,REL,OT}. For example, S1 = 〈weird,L〉,S2 = 〈to,the,top, left,of〉 and

type(S1) = SIN,type(S2) = REL.

The RR then tries to understand the individual words, typed segments, and

the full scene description in terms of the visible objects ok
l and the images Ik in

the context set. We describe how words, segments, and scene descriptions are

understood in the following three sections.

Understanding words

We understand individual words using the Words-as-Classifiers (WAC) model

of Kennington & Schlangen (2015). In this model, a classifier is trained for each

word wp in the vocabulary. The model constructs a function from the perceptual

features of a given object to a judgment about how well those features “fit” together

with the word being understood. Such a function can be learned using a logistic

regression classifier, separately for each word.

The inputs to the classifier are the low-level continuous features that represent

the object (e.g., RGB/HSV values, number of detected edges, x/y coordinates,

etc.) extracted using OpenCV.3 These classifiers are learned from instances of

language use, i.e., by observing referring expressions paired with the object referred

to. Crucially, once learned, these word classifiers can be applied to any number of

objects in a scene.

We trained a WAC model for each of the (non-relational) words in our RDG-

Pento corpus, using the annotated correct referent information for our segmented

data (Section 7.4.2).

After training, words can be applied to objects to yield a score:

3http://opencv.org
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score(wp,o
k
l ) = wp(ok

l ) (7.1)

(Technically, the score is the response of the classifier associated with word wp

applied to the feature representation of object ok
l .).

Note that relational expressions are trained slightly differently than non-

relational words. Examples of relational expressions include underneath, below, next

to, left of, right of, above, and diagonal. A WAC classifier is trained for each full

relational expression eq (treated as a single token), and the ‘fit’ for a relational

expression’s classifier is a fit for a pair of objects:4

scorerel(eq,o
k
l1 ,o

k
l2) = eq(ok

l1 ,o
k
l2) (7.2)

There are about 300 of these expressions in RDG-Pento. See (Kennington &

Schlangen (2015)) for details on this training.

Understanding segments

Consider an arbitrary segment Sj =w1:mj such as S1 = 〈weird,L〉. For a segment

(SIN or MUL), we attempt to understand the segment as referring to some object

or set of objects. To do so, we combine the word-level scores for all the words in

the segment to yield a segment-level score5 for each object ok
l :

4The features used for such a classifier are comparative features, such as the euclidean distance
between the two objects, as well as x and y distances.

5The composition operator � is left-associative and hence incremental. In this chapter,
word-level scores are composed by multiplying them.
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score(Sj ,o
k
l ) = score(w1,o

k
l ) � . . . �

score(wmj ,o
k
l )

(7.3)

Each segment Sj = w1:mj hence induces an order Rj on the object set O, through

the scores assigned to each object ok
l . With these ranked scores, we look at the type

of segment to compute a final score score∗
k(Sj) for each image Ik. For SIN segments,

score∗
k(Sj) is the score of the top-scoring object in Ik. For MUL segments with a

cardinality of two (e.g., two red crosses), score∗
k(Sj) is the sum of the scores of the

top two objects in Ik, and so on.

Obtaining the final score score∗
k(Sj) for REL segments is done in a similar

manner with some minor differences. Because REL segments express a relation

between pairs of objects (referred to in neighboring segments), a score for the

relational expression in Sj can be computed for any pair of distinct objects ok
l1

and

ok
l2

in image Ik using Eq. (7.2). We let score∗
k(Sj) equal the score computed for

the top-scoring objects ok
l1
and ok

l2
of the neighboring segments.

Understanding scene descriptions

In general, a scene description consists of segments S1, ...,Sz. Composition takes

segments S1, ...,Sz and produces a ranking over images. For this particular task,

we make the following assumption: in each segment, the speaker is attempting to

refer to a specific object (or set of objects), which from our perspective as matcher

could be in any of the images. A good candidate Ik for the target image will have

199



Label Precision Recall F-Score
SEG 0.85 0.74 0.79
NOSEG 0.93 0.97 0.95

Table 7.2: Segmenter performance.

high scoring objects, all drawn from the same image, for all the segments S1, ...,Sz.

We therefore obtain a final score for each image in the following manner:6

score(Ik) =
z∑

j=1
score∗

k(Sj) (7.4)

The image I∗
k selected by our pipeline for a full scene description is then given

by:

I∗
k = argmax

k
score(Ik) (7.5)

7.6 Experiments & Evaluations

We first evaluate the segmenter and segment type classifier as individual modules.

We then evaluate the entire processing pipeline and explore the impact of several

factors on pipeline performance.

7.6.1 Segmenter Evaluation

Task & Data. We used the annotated RDG-Pento data to perform a hold-one-

dialogue-pair-out cross-validation of the segmenter. The task is to segment each

6This is a fairly naive approach to composing the segments; we leave more complex approaches,
for example using transition models to capture regular patterns of reference across segments, such
as describing objects in a left-to-right and top-to-bottom order, for future work.
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Label Precision Recall F-score % of segments
SIN 0.91 0.96 0.93 57
REL 0.97 0.85 0.91 6
MUL 0.86 0.60 0.71 3
OT 0.96 0.97 0.96 34

Table 7.3: Segment type classifier performance.

speaker’s speech for each target image by tagging each word using the tags SEG

and NOSEG. The SEG tag here indicates the last word in the current segment.

Figure 7.3 gives an example of the tagging.

Results. The results are presented in Table 7.2. These results show that the

segmenter is working with some success, with precision 0.85 and recall 0.74 for

the SEG tag indicating a word boundary. Note that occasional errors in segment

boundaries may not be overly problematic for the overall pipeline, as what we

ultimately care most about is accurate target image selection. We evaluate the

overall pipeline below (section 7.6.3).

7.6.2 Segment Type Classifier Evaluation

Task & Data. We used the annotated RDG-Pento data to perform a hold-one-

pair-out cross-validation of the segment type classifier, training a SVM classifier to

predict labels SIN, MUL, REL, and OT using the features described in section 7.5.2.

Results. The results are given in Table 7.3. We also report the percentage of

segments that have each label in the corpus. The segment type classifier performs

well on most of the class labels. Of slight concern is the low-frequency MUL label.

One factor here is that people use number words like two not just to refer to

multiple objects, but also to describe individual objects, e.g., the two red crosses (a
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MUL segment) vs. the one with two sides (a SIN segment). Our current feature set

does not distinguish these two cases very well.

7.6.3 Pipeline Evaluation

We evaluated our pipeline under varied conditions to understand how well it

works when segmentation is not performed at all, when the segmentation and type

classifier modules produce perfect output (using oracle annotations), and when

entrainment to a specific speaker is possible.

Task. We evaluate our pipeline on the task of image retrieval: given a scene

description from our data set, how accurately does the pipeline select the correct

target image?

Three baselines. We compare against a weak random baseline (1/8 = 0.125) as

well as a rather strong one, namely the accuracies of the human-human pairs in the

RDG-Pento corpus. As Table 7.4 shows, in the simplest case, with only one object

per image, the average human success rate is 85%, but this decreases to 60% when

there are four objects/image. It then increases to 68% when 6 objects are present,

possibly due to the use of a more structured description ordering in the six object

scenes. We leave further analysis of the human strategies for future work. These

numbers show that the game is challenging for humans.

We also include in Table 7.4 a simple Naive Bayes classification approach as an

alternative to our entire pipeline. In our study, there were only 40 possible image

sets that were fixed in advance. For each possible image set, a different Naive

Bayes classifier is trained using Weka (Hall et al. (2009)) in a hold-one-pair-out

cross-validation. The eight images are treated as atomic classes to be predicted,

and unigram features drawn from the union of all (unsegmented) Director speech
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are used to predict the target image. This method is broadly comparable to the

NLU model used in (Paetzel et al. (2015)) to achieve high performance in resolving

references to pictures of single objects. As can be seen, the accuracy for this

method is as high as 43% for single object TIs in the RDG-Pento data set, but the

accuracy rapidly falls to near the random baseline as the number of objects/image

increases. This weak performance for a classifier without segmentation confirms

the importance of segmenting complex descriptions into references to individual

objects in the RDG-Pento game.

Five versions of the pipeline. Table 7.4 includes results for 5 versions of our

pipeline. The versions differ in terms of which segment boundaries and segment

type labels are used, and in the type of cross-validation performed. A first version

(I) explores how well the pipeline works if unsegmented scene descriptions are

provided and a SIN label is assumed to cover the entire scene description. This

model is broadly comparable to the Naive Bayes baseline, but substitutes a WAC-

based NLU component. The evaluation of version (I) uses a hold-one-pair-out

(HOPO) cross-validation, where all modules are trained on every pair except for

the one being used for testing. A second version (II) uses automatically determined

segment boundaries and segment type labels, in a HOPO cross-validation, and

represents our pipeline as described in Section 7.5. A third version (III) substitutes

in human-annotated or “oracle” segment boundaries and type labels, allowing us

to observe the performance loss associated with imperfect segmentation and type

labeling in our pipeline. The fourth and fifth versions of the pipeline switch to

a hold-one-episode-out (HOEO) cross-validation, where only the specific scene

description (“episode”) being tested is held out from training. When compared

with a HOPO cross-validation, the HOEO setup allows us to investigate the value
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#objects per TI
1 2 3 4 6

Random baseline 0.13 0.13 0.13 0.13 0.13
Naive Bayes baseline 0.43 0.20 0.14 0.14 0.13
Seg+lab X-validation
(I) None HOPO 0.47 0.20 0.24 0.13 0.15
(II) Auto HOPO 0.52 0.40 0.31 0.24 0.23

(III) Oracle HOPO 0.54 0.42 0.32 0.30 0.26
(IV) Auto HOEO 0.60 0.46 0.37 0.25 0.23
(V) Oracle HOEO 0.64 0.50 0.41 0.34 0.44
Human-human baseline 0.85 0.73 0.66 0.60 0.68

Table 7.4: Image retrieval accuracies for five versions of the pipeline and three
baselines.

of learning from and entraining to the specific speaker’s vocabulary and speech

patterns (such as calling the purple object in Figure 7.2 a “harry potter”).

Results. Table 7.4 summarizes the image retrieval accuracies for our three base-

lines and five versions of our pipeline. We discuss here some observations from these

results. First, in comparing pipeline versions (I) and (II), we observe that the use of

automated segmentation and a segment type classifier in (II) leads to a substantial

increase in accuracy of 5-20% depending on the number of objects/image. Compar-

ing (II) and (III), we see that if our segmenter and segment type classifier could

reproduce the human segment annotations perfectly, an additional improvement of

1-6% accuracy would be possible. Comparing (II) to (IV), we see that exposing

our pipeline training to the idiosyncratic speech and vocabulary of a given speaker

would hypothetically enable an increase in accuracy of up to 8%. Note however that

this setup cannot easily be replicated in a real-time system, as our HOEO training

provides not only samples of the transcribed speech of the same speaker, but also

human annotations of the segment boundaries, segment types, and correct referents

for this speech (which would not generally be available for immediate use in a
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run-time system). Comparing (IV) to (V), we see that oracle segment boundaries

and types also improve accuracies in a HOEO evaluation between 4-19%.

Comparing our fully automated HOPO pipeline (II) to the baselines, we see

that our pipeline performs considerably better than the random and Naive Bayes

baselines. At the same time, there is still much room for improvement when we

compare to human-human accuracy.

7.6.4 Evaluation of Object Retrieval

Table 7.4 shows that even when there is just one object in each of the eight

images, our pipeline (II) only selects the correct image 52% of the time given the

complete scene description, while humans succeed 85% of the time. We further

investigated our performance at understanding descriptions of individual objects by

defining a constructed “object retrieval” problem. In this problem, individual SIN

segments from the RDG-Pento corpus are considered one at a time, and the correct

target image is provided by an oracle. The only task is to use the WAC model to

select the correct referent object within the image for a single SIN segment. An

example of the object retrieval problem is to select the correct referent for the SIN

segment and a wooden w sort of in the known target image of Figure 7.1.

The results are shown in Table 7.5. We can observe that object retrieval is by

itself a non-trivial problem for our WAC model, especially as the number of objects

increases. This is somewhat by design in that the multiple objects present within

an image are often selected to be fairly similar in their properties, and multiple

objects may match ambiguous SIN segments such as the T or the plus sign. We

speculate that we could gain here from factoring in positional information implicit

in description strategies such as going from top left to bottom right in describing

the objects.
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n 1 2 3 4 6
accuracy 1 .88 .77 .60 .66

Table 7.5: Accuracy for object retrieval in target images with n objects.

7.7 Contributions

We have presented an approach to understanding complex, multi-utterance

references to images containing spatially complex scenes. The approach by design

works incrementally, and hence is ready to be used in an interactive system. We

presented evaluations that go end-to-end from utterance input to resolution decision

(but not yet taking in speech). We have shown that segmentation is a critical

component for understanding complex visual scene descriptions.

This work opens avenues for future explorations in various directions. Intra-

and inter-segment composition (through multiplication and addition, respectively)

are approached somewhat simplistically, and we want to explore the consequences

of these decisions more deeply in future work. Additionally, as discussed above,

there seems to be much implicit information in how speakers go from one reference

to the next, which might be possible to capture in a transition model. Finally, in an

online setting, there is more than just the decision “this is the referent”; one must

also decide when and how to act based on the confidence in the resolution. Lastly,

our results have shown that human pairs do align on their conceptual description

frames (Garrod & Anderson (1987)). Whether human users would also do this with

an artificial interlocutor, if it were able to do the required kind of online learning,

is another exciting question for future work, enabled by the work presented here.

This discussions covered in this chapter have been published in (Manuvinakurike et

al. (2016); Zarrieß et al. (2016)).
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Chapter 8

Contributions & Future Work

“If you’re not failing, you’re not pushing your limits, and if you’re not

pushing your limits, you’re not maximizing your potential”

– Ray Dalio, Principles: Life and Work

8.1 Contributions

In this chapter, I summarize the contributions made in this work. In Chapter 3,

a framework for crowd-sourced spoken dialogue data collection is developed in

support of incremental SDS development. We additionally show the advantages

and trade-offs of collecting a crowd-sourced dataset by comparing with an in-lab

dataset. This is the first such comprehensive comparison in the literature. The

framework also supports the development of an incremental SDS. To our knowledge,

this is the only framework in the literature that supports data collection for building

incremental dialogue systems.

In Chapter 4, we develop an incremental SDS which performs about as well

as humans in scoring points. This is the first such incremental SDS that was

developed to operate on a web platform and that achieves such high performance

when compared to humans. We then extend this work in Chapter 5, by utilizing

Reinforcement Learning (RL) for the development of an incremental dialogue policy.

Such a policy also learns automatically to score about as well as humans and

achieves a better qualitative performance than the previously developed agent (in
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Chapter 4). This comparison of the RL approach with a strong baseline is the

first such study in the literature showing the advantages and limitations of the RL

approach. We also find that there is no significant difference in terms of perceived

game efficiency when we compare our RL agent with human behavior. We later

extend this work by showing that transfer learning approaches can help learn better

dialogue policies with fewer samples. This is the first time in the literature that

transfer learning is used for building incremental dialogue policies.

In Chapter 6, we then extend this work by including incremental segmentation

and Dialogue Act (DA) understanding which improves the semantic processing

capabilities in SDS. We show the advantages of incremental segmentation and DA

identification in the SDS pipeline in a real-world application that helps achieve

substantial savings in processing time in the task of user intent detection. We

extend this work further in Chapter 7 and show that such incremental processing

capabilities can be achieved with visually grounded models. Figure 8.1 shows the

summary of this work in a flow diagram.

8.2 Future Work

In this section, I discuss possible future directions for this work.

Incremental dialogue processing is an approach that is expected to find wide

applications in the future. It will find use in problems that involve time critical

feedback such as autonomous self-driving cars. A preliminary analysis has begun in

Karkada et al. (2018) where we collect and annotate data for language understanding.

Similarly, the work on incremental segmentation and DA labeling will be useful in

health care intervention domains. We have begun preliminary work in this area in
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Figure 8.1: The figure shows the contributions of this work.
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Manuvinakurike et al. (2014, 2018) and will continue further work in this area in

the future.

As we have seen in this work, data collection and preparation is an important

step prior to the development of an SDS. The steps that are typically involved in

the development of an SDS are, i) human data collection, ii) data transcription, iii)

data annotation, iv) agent development and deployment. In this work, we presented

a framework for collecting data in a human-human setting using a crowd-sourcing

approach. Collecting data in a human-wizard setting is also popular for data

collection. Our framework has been adopted for collecting data in a wizard-based

setting. The user is paired with a wizard who controls the responses to the user

utterances. One of the limitations of this framework is the long wait times for

pairing the users. While this is due to the fluctuating number of users present

throughout the day, the whole process can be better streamlined with efficient load

balancing. In future work, we aim to streamline the process of crowd-sourced data

collection in this way.

The next step in the process of data preparation is transcription and annotation.

The transcription process can be automated with accurate ASR, but the transcripts

still need to be corrected. Once the audio is transcribed, it needs to be annotated.

Currently, the dialogue data is annotated by experts as it requires an understanding

of the annotation scheme and linguistic knowledge. While crowd-sourcing the

annotation process enables the collection of large-scale dialogue annotation data,

these challenges make the task of crowd-sourcing annotation challenging. In the

future, it will be interesting to explore these directions. Another fruitful direction

will be to leverage existing dialogue resources to aid the process of SDS building

and annotation. We make use of these principles to build a preliminary transfer

learning based annotation toolkit, as shown in Figure 8.2.
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Figure 8.2: The figure shows the semi-automated transcription correction and
annotation interface.

Another direction that will be interesting to follow is extending the models of

incrementality to other problems which will benefit from such models. Extending

the segmentation and dialogue act understanding models using deep learning,

which has been shown to yield high accuracy, is another fruitful direction. Zhao &

Kawahara (2019) have explored such a direction by building deep learning models

for segmentation and dialogue act understanding in a non-incremental setting with

a limited set of dialogue acts. It will be interesting to extend such work in the future

for incremental processing with more data collected using the methods presented.

For building dialogue systems that are multimodal in nature, models that

include vision and language inputs are an exciting direction to pursue in the future.

Also, an interesting direction is end-to-end incremental SDS, which eliminates the

need for building separate models. However, such models need further exploration.

End
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